Pressure induced phase transitions in Cacarbonate and effect of cationic substitution on the phase behavior

N.S. MARTIROSYAN ^{1,2}*, M. KOCH-MÜLLER ¹, I. Efthimiopoulos¹, S. Jahn²

 GFZ, German Research Centre for Geosciences, Telegrafenberg, 14474 Potsdam, Germany (*correspondence: naira.martirosyan@gfz-potsdam.de)
²Institut für Geologie und Mineralogie, Universität zu Köln, Cologne, Germany (s.jahn@uni-koeln.de)

The abundance of calcite at near surface conditions and findings of Ca-carbonates in diamond inclusions [1] triggers the interest in the high-*P* CaCO₃ phase diagram. Calculations and experiments show that there are 5 stable polymorphs at mantle *P*-*T* conditions: aragonite (< 30 GPa), CaCO₃-VII (30 -50 GPa), postaragonite (50-100 GPa) and sp³-CaCO₃ (>100 GPa) [3, 4]. Cold compression of calcite leads to another sequence of phase transitions: cc-II (1.7-2.5 GPa), cc-IIIb (2-3 GPa), cc-III (4-15 GPa), and cc-VI (>15GPa) [3, 5, 6]. *P*-induced phase transitions were studied by *in situ XRD*, and spectroscopic methods up to 50 GPa [3, 5, 6].

Here we studied the effect of Sr incorporation on the CaCO₃ phase diagram. We investigated the CaCO₃-SrCO₃ solid solution up to 55 GPa and 800 K. Samples were first synthesized from the mixture of CaCO₃ and SrCO₃ at 2 GPa and 1300 K in a multianvil apparatus. Microprobe analysis showed a homogeneous composition with the amount of Sr reaching 18 mol%. The powder XRD patterns can be described by a distorted calcite structure. All high-*P* experiments were conducted *in situ* in a diamond anvil cell using Raman-spectroscopy to detect phase transformations.

Phase transitions of the (Ca,Sr)CO₃ solid solution at room T are in good agreement with the metastable phase diagram of CaCO₃ and we observe all 4 known polymorphs: cc-II(1-2 GPa), cc-IIIb (2-4 GPa), cc-III (4-7 GPa) and cc-VI (16-55 GPa). An abrupt change in the frequencies of the Raman bands at 7 GPa indicates the formation of a new high pressure polymorph, cc-IIIc, which was not previously observed in pure CaCO₃. During heating to 600-800 K at 9 GPa we detected the re-entrance of cc-IIIb. At 10-11 GPa heating led to the formation of aragonite.

[1] Zedgenizov et al., (2014). Am. Min. **99**, 547-550. [3] Bayarjargal et al., (2018). PEPI. 281, 31-45. [4] Lobanov et al., (2017). Phys. Rev. B. 96(10), 104101. [5] Pippinger et al., (2015). Phys Chem Min.. 42(1), 29-43. [6] Koch-Müller et al., (2016). Phys Chem Min. 43(8), 545-561