Using carbonate and methane clumped isotopes for sedimentary basins analysis

XAVIER MANGENOT¹, OLIVIER CHAILAN², MARTA GASPARRINI³, MAGALI BONIFACIE⁴, ANELIA PETIT⁵, VIRGILE ROUCHON⁶, JOHN EILER¹

¹Caltech, Pasadena, CA, 91125 xamang@caltech.edu
²Total EP, Pau, France
³IFP Energies nouvelles, Rueil-Malmaison, France.
⁴IPGP, Sorbonne Paris Cité, Paris, France.

Assessing the thermal and fluid-flow histories of sedimentary basins is required for understanding the origins of natural resources, including ores, geothermal fluids or hydrocarbons. Recent developments of clumped isotope geothermometries [1,2] promise to provide quantitative estimations of key parameters for basins analysis, such as the precipitation temperature of diagenetic phases (via Δ⁴⁷ of carbonates [1]) and/or the generation temperature of natural gas (via Δ¹³CH₃D and Δ¹²CH₂D₂ composition of methane [2]). Here, we focus on two case studies from different stratigraphic interval in the Paris basin, where both carbonate and methane clumped isotope compositions were used to address different issues related to petroleum systems analysis:

First, by coupling Δœ data (n=45), U-Pb dating by LA-ICPMS (n=12), and fluid inclusions microthermometry (n=5) on Middle Jurassic carbonate reservoirs (1500-1800m deep), we precisely characterized temperature and timing of fluid-flows (water and oil) through reservoirs, as well as the origin of the paleo-fluids (δ¹⁸O, salinity) [3, 4].

The second case concerns a geochemical evaluation of the origin, maturity and compartmentalization of thermogenic methane in the deeper Rhetian sandstones (2500m depth), using conventional gas molecular and isotopic compositions (bulk δ¹³C and δD values on C1 to C5), as well as Δ¹³CH₃D and Δ¹²CH₂D₂ measurements (n=5).

References