Tracing sedimentary processes in rapidly eroding settings with paired cosmogenic in-situ ¹⁴C and ¹⁰Be

M. LUPKER¹, K. HIPPE², L. WACKER³, N. HAGHIPOUR¹, P.-H. BLARD⁴, J. LAVÉ⁴

¹Geological Institute, ETH Zürich, CH

²Institute of Geological Sciences, Freie Universität Berlin, DE

³Laboratory of Ion Beam Physics, ETH Zürich, CH

⁴Centre de Recherches Pétrographiques et Géochimiques, Nancy, FR

Cosmogenic nuclides, such as ¹⁰Be, measured in detrital river sediments are widely used to derive denudation rates and sediment fluxes at the scale of entire catchments. Pairing ¹⁰Be with another short-lived nuclide such as in-situ ¹⁴C (5700 years half-life) allows tracing erosion and sediment processes occuring on Holocene time-scales to be traced at the Earth's surface [1].

In this contribution we use paired ¹⁰Be - in-situ ¹⁴C measurments in detrital sediments produced by the rapidly eroding Himalayan range to better quantify how sediments are produced and transferred from source to sink. ¹⁰Be and in-situ ¹⁴C data from trans-Himalayan rivers show that the concentration of in-situ ¹⁴C relative to ¹⁰Be is lower than what would be expected if sediments were produced by steady-state superficial erosion of the landscape. Such apparent offset between ¹⁰Be and ¹⁴C concentrations may be explained by the erosion and mobilisation of sediments from large, deep-seated landslides. In that case, we show that it is possible to use paired ¹⁰Be and in-situ ¹⁴C measurements in detrital sediments to evaluate the average landslide depth and recurrence time averaged over the scale of entire catchments.

Once the sediments are exported to the lowlands, the paired ¹⁰Be - in-situ ¹⁴C concentrations measured in sediments are mainly sensitive to sediment transfer processes in the floodplain. Sediment storage in alluvial settings leads to the partial shielding of sediments from cosmic rays and results in the rapid decay of ¹⁴C in comparison to ¹⁰Be. Our preliminary data obtained from the sediments sampled at the mouth of the Ganges in Bangladesh has ¹⁰Be-¹⁴C signatures close to those measured in the trans-Himalayan rivers mentioned above, suggesting a rapid sediment transfer of sediments through the floodplain separating the Himalayan range from the Bay of Bengal.

[1] Hippe, 2017 – Quaternary Science Reviews, vol. 173, p. 1-19.