The occurrence of extended tricyclic terpanes in the Proterozoic and Paleozoic

T.M. LIYANAGE*1, L.M. VAN MALDEGEM1, D. EDWARDS2, C. BOREHAM2, J.M. HOPE1, J.J. BROCKS1

1The Australian National University, Canberra, Australia
(*correspondence: tharika.liyanage@anu.edu.au)
2Geoscience Australia, Canberra, Australia

The C19-C26 tricyclic terpanes are ubiquitous in oils and bitumens from a range of depositional environments and throughout the geological record. The precursor molecule and biological source of this series of biomarkers is unknown but, they constitute a large proportion of organic matter, highlighting the biological sources' ecological significance. Ratios of particular homologs are utilized to distinguish source rocks, assess post-depositional microbial degradation and to reconstruct paleo-environmental conditions [1], [2]. The C19-C26 tricyclic terpanes are frequently described in the literature, however there is little known about the occurrence of the extended tricyclic terpane series (C27-C54) through geological history. Previous reports of the extended tricyclic terpanes are restricted to the Phanerzoic Eon and there is ongoing debate about their paleoenvironmental and biological interpretations [3],[4].

Here we present the first report of clearly indigenous tricyclic terpanes ranging from the Paleoproterozoic to the early Paleozoic Era. Extended tricyclic terpanes (>C27) were detected in almost every sample analysed, highlighting their potential as paleoenvironmental parameters. Furthermore, our data infers a possible link between the extended tricyclic terpanes and depositional environment, allowing for the development of a novel proxy to help characterise ancient ecosystems. Additionally, this study provides new insights towards the enigmatic source of these orphan biomarkers.