Extremely light K isotopes enriched in subducted low-T altered oceanic crust: Implications for K recycling in the subduction zone

Haiyang Liu1,2, Kun Wang(王昆)3,*, Wei-Dong Sun1,2,*, Yilin Xiao4, Ying-Yu Xue1,2

1Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
3Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, MO 63130, USA
4School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
*Correspondence: wangkun@wustl.edu; weidongsun@qdio.ac.cn

To investigate the behaviour of potassium (K) isotopes during metamorphic dehydration and to further constrain their implications for K recycling in the subduction zone, we measured K isotopic compositions of whole-rocks from Sumdo eclogites, Tibet. Our data reveal that δ^{41}K of the eclogite whole rocks (-1.64 to -0.24) display dramatically lower values than observed in fresh MORB (-0.43 ± 0.16) and altered MORB (-0.76 to -0.11). In addition, δ^{41}K values and K$_2$O contents (also K/Nb ratios) of eclogites show positive correlations, which suggests that the low δ^{41}K values were most likely caused by dehydration during subduction. Thus isotopically heavy K may be released into the mantle wedge, while the light K is subducted into the deep mantle. Therefore, K isotope systems have the potential to trace subducted crustal materials and to create heterogeneity of mantle compositions.

Mineral separates from Sumdo eclogites are highly heterogeneous in K isotopic compositions. However, phengites generally show heavier K isotopic compositions than the coexisting omphacites and amphiboles, which is consistent with the coordination number of K in phengite (6), omphacite (7-8), and amphibole (8).