Manganese as indicator for strongly oxidizing aqueous environments in Gale crater, Mars

N. L. LANZA¹, W. W. FISCHER², S. N. LAMM³, P. J. GASDA¹, P.-Y. MESLIN⁴, A.M. OLLILA¹, S.M. CLEGG¹, A. COUSIN⁵, D. DELAPP¹, J. FRYDENVANG⁶, O. FORNI⁵, A. L. REYES-NEWELL¹, M. SALVATORE³, R.C. WIENS¹

¹Los Alamos National Laboratory, Los Alamos, NM, U.S.A (nlanza@lanl.gov)

²California Institute of Technology, Pasadena, CA, U.S.A.

³Northern Arizona University, Flagstaff, AZ, U.S.A.

⁴Universite Paul Sabatier, Toulouse, France

⁵IRAP-CNRS, Toulouse, France

⁶University of Copenhagen, Copenhagen, Denmark

Over the course of its mission, the NASA Curiosity Mars rover has traversed ~20 km over ~330 m of elevation. Over this stratigraphy, manganese abundance in rocks has varied significantly, and some anomalously high Mn abundances well above igneous values have been observed [1-2]. To concentrate Mn in rocks and sediments requires both water and strongly oxidizing conditions [3]. High manganese has been observed in a variety of geologic settings in Gale crater including as a possible surface coating [1], fracture fills [2], and embedded in fine grained lacustrine sediments [4-6]. Some instances are clearly diagenetic [e.g., 2] while others may be either authigenic or diagenetic [4-6]. In all instances, the appearance of Mn point to episodes of strongly oxidizing fluids within Gale, both when the lake was extant and also post lithification of its sediments, suggesting a long history of variable redox conditions in this region. Recent observations of Mn within sandstones supports the hypothesis that the Gale lake may have been redox stratified [7] and that these manganiferous materials formed in shallow, oxidized lakewaters [4-5]. Such environments on Earth are both habitable and inhabited; the discovery of a similar environment on Mars opens up intriguing possibilities for habitability that were previously not recognized.

[1] Lanza, N.L et al. (2014) GRL 41, 5755-5763. [2] Lanza, N.L. et al. (2016) GRL 43, 7398- 7407. [3] Stumm, W., & Morgan, J. J. (1996), Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed., 1042 pp., John Wiley, New York. [4] Gasda, P. J. et al. (2019). 50th LPSC #1620. [5] Meslin, P.-Y. et al. (2018). 49th LPSC #1447. [6] Lamm, S.N. et al. (2018). 49th LPSC #2903. [7] Hurowitz, J.A. et al (2017). Science 356(6341), eaah6849