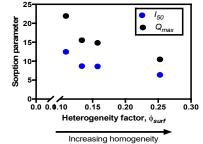
Quantification of Pyrolysis-induced heterogeneity in Biomass-derived Sorbents and its effect on Metal Sorption

AMY LAM¹, OLIVIA JONES¹, TODD L. LONGBOTTOM², OMAR R. HARVEY²


¹Department of Environmental Sciences, Texas Christian University, Fort Worth, TX 76129, USA (<u>amy.lam@tcu.edu</u> and <u>o.k.jones@tcu.edu</u>)

²Department of Geological Sciences, Texas Christian University, Fort Worth, TX 76129, USA (todd.longbottom@tcu.edu and omar.harvey@tcu.edu)

Environmental behavior of pyrogenic organic matter is known to be dictated by fire-induced variability in surface and bulk properties. However, much of this variability/heterogeneity has only been described qualitatively. This poster presentation will explore heterogeneity in charcoals from a quantitative perspective through a "surface heterogeneity factor (ϕ_{surf})" approach¹ and links to metal sorption characteristics. Specifically, the presentation will cover variations in charcoal ϕ_{surf} and its relationship to key metal sorption characteristics e.g. sorption maximum (Q_{max}), point of 50% sorption (I_{50}) and the extent

of adsorption window (*W*_{ads}).

Resultsfrom Pb^{2+} sorption at pH5 to charcoalsshowedthatboth Q_{max} and I_{50} decreasedwithincreasing ϕ_{surf} (i.e.

decreasing heterogeneity) indicating heterogeneous surfaces had both a wider diversity and larger quantity of sites for Pb²⁺ sorption than more homogeneous (larger ϕ_{surf}) surfaces. W_{ads} also increased with decreasing ϕ_{surf} , reflecting that pyrolysisinduced heterogeneity broadens the range of concentrations over which Pb²⁺ can be sorbed to the charcoals. The presentation will further discuss these (and other) results, methodology and modeling applications.

(1) Harvey, Leonce & Herbert (2018), *Environmental Science & Technology* 52(11), 6167-6176.