Mineralogy and oxygen isotopes of ultrarefractory inclusions

A. Krot1, C. Ma2, K. Nagashima1, S. Simon3, A. Davis4, M. Ivanova5, P. Genzel6, F. Brenker6

1University of Hawai‘i, USA (sasha@higp.hawaii.edu)
2California Institute of Technology, USA
3University of New Mexico, USA
4University of Chicago, USA
5Vernadsky Institute, Russia
6Goethe University, Germany

Fine-grained CAIs with Group II rare earth element (REE) patterns condensed from a gaseous reservoir from which the ultrarefractory (UR) REEs were removed. The carriers of UR REEs are poorly known. Here we report on the mineralogy, petrology and O-isotope compositions of ~20 CAIs, presumably UR (REEs have not been measured yet), from the CO, CV, CH, CR, and CM carbonaceous chondrites (CCs). The UR CAIs studied are dominated by Zr, Sc, Ti, and Y-rich oxides (allendeite, kangite, lakargite, panguite, Y-perovskite, tazheranite, warkite, zirconolite) and silicates (davisite, eringaite, thortveitite) and often contain platinum group element nuggets; most are surrounded by Wark-Lovering rims of Sc-pyroxene, seringaite, Al,Ti-diopside, and forsterite. UR CAIs occur as (i) individual objects, (ii) constituents of amoeboid olivine aggregates and Fluffy Type A CAIs, and (iii) relict objects in forsterite-bearing Type B CAIs and chondrules. UR CAIs from the least metamorphosed CCs studied [Murchison (CM2), Y-793261 (CR2), Acfer 182 (CH3.0), and DOM 08006 (CO3.0)], are uniformly 16O-rich (Δ17O ~ –24±2‰). In contrast, most UR CAIs from CCs of petrologic type ≥3.1 (CVs: Kaba, Vigarano, Efremovka, and NWA 3118, and COs: DOM 08004, Moss, and Ornans) are isotopically heterogeneous: spinel, hibonite and forsterite are 16O-rich (Δ17O ~ –24‰), whereas warkite, eringaite, kangite, Y-perovskite, and davisite are 16O-depleted to various degrees (Δ17O range from ~20 to ~2‰). We infer that (i) Zr, Sc, Ti, and Y-rich minerals in UR CAIs may represent one of the major carriers of UR REEs. (ii) UR CAIs formed in an 16O-rich gaseous reservoir; some subsequently experienced melting during CAI- and chondrule-forming events. (iii) UR CAIs from CCs of petrologic type 2–3.0 largely retained their original O-isotope compositions, whereas those from CCs of higher petrologic type that experienced fluid-assisted thermal metamorphism, recorded mineralogically-controlled O-isotope exchange most with an 16O-depleted fluid phase on the host chondrite parent asteroids. Some UR CAIs from CCs experienced O-isotope exchange during chondrule melting.