Calcium isotope composition (δ⁴⁴⁴⁰Ca) of bulk carbonate spanning Ocean Anoxic Event 2: kinetic effects or diagenesis?

G. D. KITCH¹, A.D. JACOBSON¹, M.E. ANKNEY¹, A. L. MASTERSON¹, M. T. HURTGEN¹, B. B. SAGEMAN¹

Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL ('gabby@earth.northwestern.edu)

Calcium isotope (844Ca) records spanning Ocean Anoxic Event 2 (OAE2) show positive excursions on the order of 0.10%-0.15%. Positive δ^{4460} Ca excursions are consistent with a decrease in the magnitude of the carbonate fractionation factor due to decreased precipitation rates. However, shifts to heavier & alues may also represent early diagenetic alteration under fluid-buffered conditions23. To evaluate whether the excursions represent primary rate-dependent effects or secondary diagenetic alteration, we used a highprecision TIMS method to generate Ca isotope data for two sections in the Western Interior Basin. We also measured carbon and oxygen isotope ratios ($\delta^{13}C_{cab}$ and $\delta^{13}O_{cab}$), as well as Sr/Ca ratios. Measurements for the Aristocrat-Angus-12-8 core capture a complete section leading into OAE2. DuVivier et al. (2015) previously reported δ⁴⁴⁴⁰Ca values for the USGS #1 Portland core. We analyzed the same samples for $\delta^{\mu}C_{aut}$, $\delta^{18}O_{cab}$, as well as new samples for all four parameters.

The Angus Ca isotope record shows a positive excursion similar to the one documented for the Portland core. Both excursions correspond with shifts to lower Sr/Ca ratios, which could reflect either decreased precipitation rates or diagenetic alteration. One sample from the Angus core has a $\delta^{_{12}}C_{_{curb}}$ value <0%, but the corresponding δ^{HM} Ca value is no higher than all other samples with $\delta^{_{12}}C_{_{catb}}$ values >0%. Four Portland core samples with the highest δ_{440} Ca values correlate with $\delta_{13}C_{ext}$ values <0%. These data, which DuVivier et al. (2015) excluded from consideration, may provide evidence for fluidbuffered diagenetic alteration. All other samples defining the positive δ_{4440} Ca excursion have $\delta_{13}C_{aab}$ values >0%, consistent with the range expected for primary carbonate deposited during OAE2. For the sections studied, we find that diagenesis manifests in discrete intervals and produces small δ^{HIM} Ca increases (0.10%) that are resolvable with highprecision methods. Our results point to kinetic effects as the driver of the positive isotope excursions.

¹DuVivier et al. (2015), EPSL ¹Higgins et al. (2018), GCA ¹Ahm et al. (2018), GCA, ¹Lehn et al., (2013), IJMS.