Please ensure that your abstract fits into one column on one page and complies with the *Instructions to Authors* available from the Abstract Submission web page.

Tracing of gorundwater nitrogen source driving *Ulva lactuca* bloom using ¹⁵N-NO₃, ¹⁸O-NO₃ stable isotope ratios

MIN-SEOB KIM^{1,2}, SUK-HEE YEON², BO-RA LIM², JAE-SEON PARK², HYUN WOO PARK², HYEN-MI CHUNG³, JONG-WOO CHOI^{2*}

- ¹Marine Environment Research Devision, NIFS, Busan 46083, Rep. of Korea,
- ²Environmental Measurement&Analysis Center, NIER, Incheon 22689, Rep. of Korea,
- ³Fundamental Environment Research Department, NIER, Incheon 22689, Rep. of Korea,

<u>candyfrog77@gmail.com</u>, <u>yoonsh@korea.kr</u>, <u>icecream27@korea.kr</u>, jspark0515@korea.kr, <u>hyenmic@korea.kr</u>, <u>cjw111@korea.kr</u>,

Recently, occurance of opportunistic macroalgae bloom (U. lactuca) is a globally considered a sign of eutrophication. The aims of this study were to determine the cause of the bloom using multi-isotope techniques(δ¹³C, δ¹⁵N, δ¹⁵N-NO₃ and δ¹⁸O-NO₃) and investigate why the bloom sustained in the lower reach of the bay. Ulva coverd Bangdu bay were measured along 9 line transects(20 sites). Water column samples including seawater, groudwater, aquaculture and agriculture drainage were collected for nutrinet and isotope analysis to investigate the flux of nitrogen from the anthropogenic source. Ulva tissue was collected and analysed both concentration and isotope values for C, N and metals(Cd, Cu, Pb.. etc). The results showed that anthropogenic nitrogen source, specifically ammonium and nitrate, from the agriculture and aquaculture drainage and input from a nearby groundwater acted as a consistent source of nutreint that enabled the bloom to persist in Bangdu bay, Jeju island. With the modeling approach we found a high range in the estimate proportion of groundwater N, indicating that the mixing models is good tool to reveal contribution of N source. The low concentration of metals and high concentration of N in the tissue of *U. lactuca* mean this algae has the potential to be used as a fertilzer or composted if harvested. Better characterization of tributary δ¹⁵N-NO₃ and δ¹⁸O-NO₃ by better measurements or a more detailed modeling approach will aid in understanding N-cycle dynamics in estuary ecosystem.