Accurate determination of ⁹⁰Sr in IAEA Proficiency Test using Thermal Ionization Mass Spectrometry

NORBERT KAVASI¹, SARATA KUMAR SAHOO¹, TATSUO AONO¹, ZENON PALACZ²

¹National Institutes for Quantum and Radiological Science and Technology (QST), Inage, Chiba, Japan, kavasi.norbert@qst.go.jp

²IsotopX Ltd., Middlewich, Chessire, CW 10 OGE, United Kingdom

Thermal ionization mass spectrometry (TIMS) equipped with magnetic sector and multicollector detector systems is a standard and powerful analytical technique for precise stable Sr isotope ratio analysis. Other than stable isotopes, the determination of artificial ⁹⁰Sr ($T_{1/2} = 28.8$ y) is important from the radiation protection perspective.

The 90 Sr analysis in environmental samples is a challenging task using mass spectrometry instruments because the amount of 90 Sr is quite small, in the range of fg g⁻¹ (ultra-trace level). However, the utilization of detectors with low ion beam detection capacity, - such as dynode channel electron multiplier, secondary electron multiplier and Daly ion-counting system -, make the 90 Sr determination possible.

For ⁹⁰Sr analysis, the mass spectrometry method is faster than conventional radiometric techniques, although interference from ⁹⁰Zr and peak tailing on the higher mass side from ⁸⁸Sr must be considered for a reliable ⁹⁰Sr determination.

In our laboratory a novel method was developed for ⁹⁰Sr analysis using TIMS [1]. This novel method was successfully applied for ⁹⁰Sr measurement first time in the history of mass-spectrometry in a worldwide open proficiency test (IAEA-TEL 2017-3) conducted by IAEA. The ⁹⁰Sr concentration of tap water ($2.20\pm0.06 \text{ fg} \cdot \text{g}^{-1}$) and milk powder ($19.6\pm1.0 \text{ fg} \cdot \text{g}^{-1}$) samples were analysed in the proficiency test and an 'accepted' status was gained for both accuracy (relative bias of 4.2 % and 2.1 %, respectively) and precision (relative uncertainty of 3.1 % and 5.7 %, respectively).

[1] Kavasi & Sahoo (2019) Anal. Chem. 91, 2964-2969.