Spatial variation of carbon isotope compositions of soil CO₂ around CO₂-rich spring: implications for soil gas monitoring to detect CO₂ leakage

YEON-JU KANG¹, HYUN-KWON DO¹, SOONYOUNG YU¹, SEONG-TAEK YUN¹*

¹Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea (*correspondence: styun@korea.ac.kr)

Natural CO₂-rich springs are the natural analogue of the seepage of sequestered CO2 from a geologic carbon storage site. In this study, we examined the spatial variation of the flux and carbon isotopic composition of soil CO2 around the CO₂-rich spring (Chosukgol) in the Gyeongsang sedimentary basin, South Korea, in order to evaluate the usefulness and limitations of soil gas monitoring to delineate the leakage of CO₂. From 61 spots around the spring, the measured soil CO₂ flux values ranged widely from 2.02 to 48.02 g/m²/day. The δ^{13} C values of soil CO₂ also widely ranged from -26.8 to -10.7%. These data indicate the mixing of CO₂ from three different sources in the study area: i) atmopheric CO₂ (CO2atm), ii) soil CO2 (CO2soil), mainly derived from soil respiration, and iii) ascending, deep-seated CO₂ (CO_{2deep}) of a magmatic origin. The spots with relatively high $\delta^{13}C_{CO2}$ values tend to be located along an N-S-trending lineament, together with the location of CO₂-rich springs. The CO₂-rich springs have very high P_{CO2} and $\delta^{13}C_{DIC}$ values, indicating that the aquifer have been strongly affected by CO_{2deep}. However, the zone with depleted CO₂ flux values occurs preferentially around CO₂-rich springs; this is likely due to the dissolution of uprising CO_{2deep} into shallow groundwater. Our study indicates that subsurface processes such as dissolution of CO2deep into water and the mixing with other sources such as CO_{2soil} and CO_{2Atm} can make it difficult to detect and discriminate spatially the leakage of CO_{2deep} by monitoring soil gas concentration and/or CO2 flux. The leakage of CO2deep can be identified by distinctly higher δ^{13} CO₂ values of soil gas, even though CO₂ flux are lowered by dissolution into water. This study implies that the combined interpretation of CO₂ flux data with $\delta^{13}C_{CO2}$ values of soil gas is crucial to precisely detect the leakage of CO₂ from a carbon storage site.

<*Acknowledgement>* This study was supported by the Korea CO₂ Storage Environmental Management (K-COSEM) Research Center, Korea.