High-resolution Mg/Ca measurements of foraminifers using microanalytical techniques

K.P. Jochum1 (k.jochum@mpic.de), A. Jentzen1, R. Schiebel1, D. Garbe-Schönberg2, B. Stoll1, U. Weis1, J. Leitner1, J. Belza3, F. Vanhaecke3, G.H. Haug1

1Max Planck Institute for Chemistry, Mainz, Germany
2University of Kiel, Germany
3Ghent University, Belgium

The Mg/Ca ratio in foraminifer shells is a proxy of seawater temperature. Microanalytical techniques, such as LA-ICP-MS, NanoSIMS, 2D, and 3D scanning are suitable to perform such investigations. A recently developed single-shot technique using fs - 200 nm – LA-ICP-MS with low fluence (< 0.6 J cm-2) enables a depth resolution of about 50 – 100 nm/pulse with a precision (1 RSD) of about 5 %. Calcium carbonate nano-pellets with grain sizes reaching the range of nanoparticles (such as the microanalytical reference material MACS-3 np with a precision of <1 % RSD) help to improve the accuracy of the Mg/Ca data by using them as calibration material. NanoSIMS ion probe measurements are useful to perform images of 25Mg+ and 40Ca+ in selected areas (e.g., 20 x 20 \textmu m2) with a resolution of 0.2 \textmu m. 2D and 3D scanning techniques using LA-ICP-MS help to identify the variability of Mg, Ca and other elements of the entire species and to test homogeneity of microanalytical reference materials. Femtosecond-LA-ICP-MS has been applied for high-resolution analyses of single chambers and depth profiles of individual planktic and benthic foraminifer tests. Mg/Ca variabilities of less than about 1 mmol mol-1 can be detected for ablation hole-depths up to 20 \textmu m. The limit of detection (LOD) of Mg/Ca is 0.05 mmol mol-1. NanoSIMS measurements on selected specimen were performed to confirm the data and interpretation. Depth profiles of shells of \textit{O. universa} display layers of high and low Mg/Ca bands (Spero et al., 2015) indicating night and day calcification cycles, respectively.