Nanoscale structure of high-temperature Ru-Os sulphides

ABIGAIL JIMÉNEZ-FRANCO1,2, JOSEP ROQUÉ-ROSELL1, JOSÉ MARÍA GONZÁLEZ-JIMÉNEZ3, JOAQUÍN A. PROENZA1, FERNANDO GERVILLA4,5, FERNANDO NIETO4,5

1 Departament de Mineralogia, Petrologia i Geologia
 Aplicada and Institut de Nanociència i Nanotecnologia,
 Universitat de Barcelona, Martí i Franquès s/n,
 Barcelona, Catalunya 08028, Spain.
2 Posgrado en Ciencias de la Tierra, Universidad Nacional
 Autónoma de México, Ciudad Universitaria, Delegación
 Coyoacán, 04510 Cd. de México, México
3 Departamento de Mineralogía y Petrología, Facultad de
 Ciencias, Universidad de Granada, Spain.
4 Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC-
 UGR, Avda. de las Palmeras 4, 18100 Armilla, Granada,
 Spain.
abyjimenez@ub.edu, josep.roque@ub.edu, jmgonzj@ugr.es,
jauproenza@ub.edu, gervilla@ugr.es, nieto@ugr.es

This work provides the first ever nano-scale characterization of the zonation of Ru-Os sulphides of the solid solution series laurite (RuS₂)-erlichmanite (OsS₂) in nature. These sulphides were found as solid inclusions within unaltered chromite forming chromitite ores of the Ojén ultramafic massif (Spain) and the Monte Bueno chromite deposit (Cuba). The zoned laurite-erlichmanite grains are <10 µm size and exhibit variable micron-scale structure of zoning under FESEM, including simple zoning made up of cores of Os-poor laurite surrounded by Os-rich laurite, and complex oscillatory characterized by alternating bands of Os-rich and Os-poor laurite and/or erlichmanite. Lamellas about 80nm in thickness were obtained from two different zoned laurite-erlichmanite crystals by means of FIB and studied under High Resolucion Transmission Electron Microscopy (HRTEM). HRTEM images coupled with High Angle-Annular Dark Field (HAADF) and Precession Electron Diffraction (PED) analysis revealed that zoning in laurite-erlichmanite exists not only at the micro-scale but also at the nanoscale realm. More important is the nanoscale observation of the Os-rich rims and bands of laurite, as detected by conventional micro-analytical techniques (FE-SEM and EMPA); they consist of homogenous laurite matrix hosting fringes (<20 nm in thickness) of pure erlichmanite (OsS₂). Our unprecedented observation highlight the importance of nanoscale studies for a better understanding on the genesis of platinum-group minerals in magmatic systems.