LKZ-1: A new zircon standard for U-Pb dating, O-Hf isotopic and trace element analysis

YOUN-JOONG JEONG^{1*}, ALBERT CHANG-SIK CHEONG¹

¹Korea Basic Science Institute, Chungbuk 28119, South Korea (*correspondence: hero0123@kbsi.re.kr)

Chemical and isotopic analyses of minerals essentially require the use of reliable reference materials. Here, we introduce a new zircon standard, namely LKZ-1, for the analysis of U-Pb age, O-Hf isotopes, and trace elements. This gem-quality zircon single crystal from Sri-Lanka yielded a slightly discordant isotope dilution-thermal ionization mass spectrometric U-Pb age (${}^{207}\text{Pb}/{}^{206}\text{Pb}$ age = 575.22 ± 0.98 Ma). The sensitive high-resolution ion microprobe analysis yielded a comparable ²⁰⁶Pb/²³⁸U age of 572.6±2.0 Ma, with moderately high U concentrations (619±21 ppm, 1 standard deviation), restricted Th/U ratios (0.146±0.002), and negligible common Pb contents (206Pbc < 0.2%). Secondary ion mass spectrometric and laser ablation-assisted multiple collector ICPMS analyses showed little variation in O (δ¹⁸Ov $s_{MOW} = 10.65 \pm 0.14$ %; laser fluorination value = 10.72 ± 0.02 ‰) and Hf (176 Hf/ 177 Hf = 0.281794±0.000016) isotopic compositions. LKZ-1 was also quite homogeneous in chemical composition (RSD of laser ablation ICPMS data ≤ 10%, for most >1 ppm elements), displaying a relatively uniform chondrite-normalized rare earth element pattern $((Lu/Gd)_N = 31\pm 3, Eu/Eu^* = 0.43\pm 0.17, Ce/Ce^* = 44\pm 32).$ These consistencies suggest that the LKZ-1 zircon is a suitable working standard for geochronological and geochemical analyses.