Abstract

Controls on δ⁹⁸Mo in modern ferruginous and euxinic sediments and porewaters

ALEC M. HUTCHINGS¹, ANIRBAN BASU², ALEX DICKSON² AND ALEXANDRA V. TURCHYN¹

¹ Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ.
admh220@cam.ac.uk

² Department of Earth Sciences, Royal Holloway, University of London, Egham, TW20 0EX

The molybdenum isotope signature (δ⁹⁸Mo) of sediments and sedimentary rocks have been used to elucidate modern and past redox conditions, respectively. The difference between molybdenum sequestration mechanisms in euxinic and ferruginous environments imparts different sedimentary δ⁹⁸Mo and Mo concentrations. At present however, we have an incomplete understanding of the processes that generate these isotopic signals in different redox environments. East Anglian salt marsh pond sediments contain ferruginous and euxinic geochemical conditions that can be spatially separated by less than 10 m. We present a dataset comprising the sedimentary pore fluid and bulk digested solid Mo concentration and δ⁹⁸Mo in both environments. Our results demonstrate that porewater δ⁹⁸Mo varies from −0.5 to 3.0‰ and sediment δ⁹⁸Mo varies from 0.9 to 2‰ in euxinic ponds. This is despite similar concentrations of aqueous sulfide (0.5–2.0 mM) well in excess of the 11 µM switchpoint required for quantitative tetrathiomolybdate formation. We suggest Mo adsorbed to iron oxides in the salt marsh sediment can be released during reductive dissolution by sulfide under euxinic conditions. This process could produce sediment and porewater δ⁹⁸Mo lower than the seawater source. The large variability of δ⁹⁸Mo in these sediments has implications for the viability of using δ⁹⁸Mo to trace euxinic conditions in the geological record.