Carbonate sedimentary rocks as archive of palaeoatmospheric argon

JENS HOPP^{1*}, MARIO TRIELOFF¹, ULRICH OTT²

 ¹Institut für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234-236, D-69120 Heidelberg, Germany (*correspondence: jens.hopp@geow.uniheidelberg.de, mario.trieloff@geow.uni-heidelberg.de)
² Max-Planck-Institut für Chemie, Hahn-Meitner-Weg 1, D-

55128 Mainz, Germany (uli.ott@mpic.de)

Solid element radiogenic isotope systems deliver robust information about the time evolution of continental crust. More difficult to reconstruct is the outgassing history of the Earth's interior. The ⁴⁰Ar/³⁶Ar-ratio is a particularly useful isotope system that can in principle provide such information. The initial ⁴⁰Ar/³⁶Ar-ratio of the solar system was essentially zero, but, due to decay of long-lived ⁴⁰K (half-life 1.25 Ga), the abundance of ⁴⁰Ar has increased since then. Today, the terrestrial atmospheric ⁴⁰Ar/³⁶Ar-ratio is about 300, whereas the Earth's mantle exhibits large ratios of >25,000. These highly elevated values indicate an early release of primordial ³⁶Ar into the atmosphere. In addition, crustal rocks contain a substantial portion of K and represent a major source of radiogenic ⁴⁰Ar, which is partially released into the atmosphere during tectonic episodes or changes in environmental conditions (weathering, erosion). For decades, there have been attempts trying to establish palaeoatmospheric ⁴⁰Ar/³⁶Ar-ratios, but only two anchor points have been published so far [1,2]. In an effort to check for additional carriers that have retained ancient atmospheric argon, we have analyzed carbonates from the Neoarchean Transvaal basin by the stepwise crushing method. We found positive correlations between the ⁴⁰Ar/³⁶Ar- and ⁴He/³⁶Arratios, indicating the presence of several subcomponents: Atmosphere, *in-situ* radiogenic ⁴He and ⁴⁰Ar, and a crustal component with excess ⁴⁰Ar. In one dolomite, the data for the first 7 crushing steps are well-correlated, with an intercept 40 Ar/ 36 Ar-ratio of 266±8 (1 σ), distinctly lower than in modern air. A ³⁹Ar-⁴⁰Ar age spectrum of detrital sericite / muscovite within this rock indicates a thermal disturbance at ca. 2 Ga, likely related to the Bushveld magmatic activity. The inferred palaeoatmospheric ⁴⁰Ar/³⁶Ar-ratio is at the upper limit predicted by isotopic evolution models for this age, and may be still affected by minor crustal ⁴⁰Ar contributions. Our result demonstrates the general potential of carbonate rocks as an archive of palaeoatmospheric argon.

[1] Cadogan (1977) *Nature* **268**, 38-40. [2] Pujol *et al.* (2013) *Nature* **498**, 87-92.