High Spatio-Temporal Methane Dynamics in Surface Waters: Between *in situ* Production and Emission

JAN F. HARTMANN^{1,2}, MARCO GÜNTHEL³, THOMAS KLINTZSCH¹, GEORGIY KIRILLIN⁴, HANS-PETER GROSSART^{4,5}, FRANK KEPPLER¹ AND MARGOT ISENBECK-SCHRÖTER¹

¹ Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany

² Alfred-Wegener-Institut, Helmholtz-Zentrum für Polarund Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany

³ Department of Biosciences, Swansea University, Swansea SA2 8PP, UK

⁴ Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany

⁵ Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, 16775 Stechlin, Germany

For more than one decade, freshwater environments are considered as globally significant methane (CH₄) sources. The discovery of CH₄ accumulation in oxic marine and limnic waters led to redefine the role of aquatic environments in the global CH₄ budget. Although CH₄ accumulation in oxic surface waters became obvious over recent years, the sources are still subject to controversial discussions.

We present high-resolution simultaneous *in situ* measurements of CH₄ concentrations and its stable isotope values in a stratified oligo-mesotrophic lake. We show that CH₄ dynamics within the oxic water layer are notably stronger and faster than previously assumed. Additionally, aquatic surface water CH₄ accumulation originates from a highly dynamic interplay between CH₄ emission, oxidation and production within the oxic surface water.

Measured *in-situ* concentrations of aquatic CH₄ show remarkably good spatial and temporal coverage with cyanobacteria and diatom pigments. Laboratory incubations of different phytoplankton types and the application of stable isotope labelling techniques provide evidence that major phytoplankton classes in Lake Stechlin *per se* produce CH₄ under oxic conditions.

Combined with our field data, this implies that epilimnic CH₄ production is related to the photoautotroph community and thus drives accumulation of CH₄ in surface waters in a highly dynamic spatio-temporal manner.