Bioreduction of $\mathrm{Cr}(\mathrm{VI})$ over the composites of birnessite and Shewanella oneidensis MR-1

PINGPING HAN ${ }^{1}$, ABDELKADER
MOUSTAFA MOHAMED ABDELKADER ${ }^{1}$, LU YU ${ }^{1}$, KE DAI $^{1 *}$ AND QIAOYUN HUANG ${ }^{1}$
${ }^{1}$ College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China (*correspondance:
dk@mail.hzau.edu.cn)

The interaction between soil mineral and microorganisms will inevitability affect the process of bioreduction of $\operatorname{Cr}(\mathrm{VI})$. In this study, the reduction process and mechanism of $\mathrm{Cr}(\mathrm{VI})$ over the composites of birnessite and Shewanella oneidensis MR-1 was studied through the reduction kinetic experiment, and the analysis of surface sites, surface charge, functional groups and chromium speciation. Birnessite increased the negative charge on the surface of Shewanella oneidensis MR-1 but decreased the concentration of surface sites. High concentration of birnessite inhibited the metabolism of microorganisms, but it has little effect when the concentration is less than $5 \mathrm{~g} / \mathrm{L}$. Birnessite promoted the reduction of $\mathrm{Cr}(\mathrm{VI})$ because of its enhanced capacity of adsorption. In addition, the introduction of electron shuttle (AQDS and AQS) enhanced the reduction of adsorbed $\mathrm{Cr}(\mathrm{VI})$ to soluble $\mathrm{Cr}(\mathrm{III})$. The reduction rate increased with the increase of pH in the range of 5-8 and decreased with the increase of initial $\mathrm{Cr}(\mathrm{VI})$ concentration due to the toxicity of $\mathrm{Cr}(\mathrm{VI})$. As indicated by the XPS results, $\mathrm{Cr}_{2} \mathrm{O}_{3}$ and $\mathrm{Cr}(\mathrm{OH})_{3}$ is the main form of chromium at the surface of Shewanella oneidensis MR-1-birnessite composites after the reduction of $\mathrm{Cr}(\mathrm{VI})$. During the process of $\mathrm{Cr}(\mathrm{VI})$ reduction, $\mathrm{Mn}(\mathrm{IV})$ in birnessite was reduced to $\mathrm{Mn}(\mathrm{II})$ and Mn (III) by Shewanella, and the generated $\mathrm{Mn}(\mathrm{III})$ participated in the reduction of $\mathrm{Cr}(\mathrm{VI})$. Through the ATR-FTIR/2D-CoS analysis, the order of function groups reacted with $\mathrm{Cr}(\mathrm{VI})$ is: $\mathrm{O}-\mathrm{Mn}-\mathrm{O} \rightarrow$ amide II \rightarrow amide I \rightarrow MR-1 $\mathrm{PO}_{2^{-}} \rightarrow$ octahedral $\mathrm{MnO}_{6} \rightarrow \mathrm{PO}_{2^{-}}$of monodentate complex $\rightarrow \mathrm{CH}_{2} / \mathrm{CH}_{3}$. These results also indicate the contact of $\mathrm{Cr}(\mathrm{VI})$ with birnessite is prior to that with Shewanella oneidensis MR-1.

