Geological storage of CO₂ in subseafloor basalt offshore Washington State and British Columbia (CarbonSAFE Cascadia project)

DAVID GOLDBERG¹, LARA ASTON², ALAIN BONNEVILLE², INCI DEMIRKANLI², CURTIS EVANS³, ANDREW T FISHER⁴, MICHAEL GERRARD⁵, DANIEL GIAMMAR⁶, MARTIN HEESEMANN³, KEN HNOTTAVANGE-TELLEEN⁷, EMILY HSU⁸, CRISTINA BROGLIA¹, KATE MORAN³, AH-HYUNG ALISSA PARK⁸, MARTIN SCHERWATH³, PHILIP A SKEMER⁶, ANGELA L SLAGLE¹, MARTIN STUTE¹, TESS S WEATHERS⁴, ROMANY WEBB⁵, RACHEL K WELLS⁶, MARK D WHITE², SIGNE K. WHITE² AND THE CARBONSAFE CASCADIA PROJECT TEAM

¹Lamont-Doherty Earth Observatory, Palisades, NY, USA, goldberg@ldeo.columbia.edu

²Pacific Northwest National Laboratory, Richland, WA, USA ³Ocean Networks Canada, Victoria, BC, Canada

⁴University of California Santa Cruz, Santa Cruz, CA, USA

⁵Columbia University. School of Law, New York, NY, USA

⁶Washington University in St Louis, St. Louis, MO, USA

⁷GHG Underground, Brunswick, USA

⁸Columbia University, Earth and Environmental Engineering, New York, NY, USA

⁹Barnard College, New York, NY, USA

Sub-seafloor basalts are widely distributed on Earth and may enable permanent mineralization of injected CO2 in solid rock form. If feasible and scalable, this sequestration technology promises a means for significant reductions in the atmospheric concentration of greenhouse gases. The CarbonSAFE Cascadia project evaluated both technical and non-technical feasibility of collecting and storing 50 million MT of CO2 in a safe, ocean basalt reservoir offshore from Washington State and British Columbia. Project goals include evaluating this reservoir as an industrial-scale CO2 storage complex, developing potential source/transport scenarios, conducting laboratory and modeling studies to determine the potential capacity of the reservoir, determining long-term monitoring options, and assessing economic, regulatory and project risks. Potential scenarios include a variety of industrial sources and transport options in the USA and in Canada. Experimental and modeling results indicate the potential for effective injection and rapid mineralization in sub-seafloor basalt. Regulatory reforms to facilitate offshore CO2 storage may be needed for development of a future pilot project in the Cascadia Basin and lessons learned at this location may be transferrable elsewhere around the globe.