Dating two young laminated stalagmites by the ²¹⁰Pb_{excess} method.

BASSAM GHALEB^{1*}, MOHAMED ALLAN², DANIELE L. PINTI¹, SOPHIE VERHEYDEN³, NATHALIE FAGEL²

¹GEOTOP, Université du Québec à Montréal, CP 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada. (*correspondence :ghaleb.bassam@uqam.ca)

² AGEs, Géologie, Université de Liège, 14 Allée du 6 Août, 4000 Liège, Belgium

³ Earth System Sciences, Vrije Universiteit Brussel, Pleinlaan, 1050 Brussels, Belgium

Stalagmites are considered as a reliable continental archive for paleo-climatic and paleo-environmental reconstructions based on analyses of their stable isotopes ¹⁸O and ¹³C and trace element contents. Dating very young stalagmites offers the possibility to validate such reconstructions through the comparison with historical and instrumental data. The worldwide distribution and the ability of dating stalagmites by U-series dating makes them a preferred choice, compared to other proxies for such reconstructions. However, establishing chronologies for very young stalagmites (century timescale) may still have some associated difficulties. For example ¹⁴C cannot be used in a straightforward manner due to uncertainties on multiple sources of CO₂. The application of U-series dating of very young speleothems is not obvious when they are poor in uranium and have some detrital fractions, which require age corrections that result in high uncertainties. We present here the potential of the ²¹⁰Pb excess method as a dating tool for very young stalagmites. For instance, two laminated stalagmites from the Han-sur-Lesse karstic complex (Belgium) were analysed for their ²¹⁰Pb activities. The results in both stalagmites show a very clear and well-defined decreasing exponential curve from the top to the bottom, allowing therefore the calculation of ²¹⁰Pb ages for different depths and thus growth rates of the stalagmites. By comparing these ages with those obtained by laminae counting, we can validate ²¹⁰Pb ages. Our results indicate a good agreement between the ages and highlight the potential of using the ²¹⁰Pb method for dating very young, and not laminated stalagmites.