The Deep Ocean Carbon System Across the Mid-Pleistocene

Laura L. Haynes*¹, Bärbel Hönisch¹, Jesse R. Farmer², Vincent J. Clementi³, Heather L. Ford⁴, Maureen E. Raymo¹, Steven L. Goldstein¹, Leopoldo D. Pena⁵, Maayan Yehudai¹, Torsten Bickert⁶, & David W. Lea⁷

 ¹Lamont Doherty Earth Observatory, Columbia University, *correspondence: laurah@ldeo.columbia.edu
²Princeton University Dept. of Geosciences & Max- Planck-Institut für Chemie
³Dept. of Marine & Coastal Sciences, Rutgers University
⁴Department of Earth Sciences, University of Cambridge

⁵Universitat de Barcelona, Dept. of Stratigraphy, Paleontology and Marine Geosciences

⁶MARUM, Universität Bremen

⁷Department of Earth Science, UC Santa Barbara

Earth's climate underwent fundamental shifts during the Mid-Pleistocene Transition (MPT), including a reorganization of deep Atlantic ocean circulation, reduced glacial atmospheric pCO₂, and an increase in the dominant periodicity of ice ages[1,2]. Carbon and neodymium isotope records suggest an increased influence of a low-δ¹³C, southern-sourced water mass in the deep Atlantic at ~900 ka, which may have fostered enhanced deep ocean carbon storage[1]. To characterize the MPT carbon cycle perturbation, we use B/Ca in benthic foraminifera to reconstruct deep ocean carbonate ion ([CO32-]) in the deep Atlantic and Pacific oceans. Pre- to post- MPT data from the Atlantic at ODP Sites 925 and 926 suggest a decrease in both glacial and interglacial [CO₃²⁻] at 900 ka, coincident with a decrease in δ^{13} C and increase in southern-sourced water presence as indicated by ε_{Nd} records[1], supporting an ocean circulation control on deep Atlantic [CO₃²⁻]. [CO₃²⁻] from ODP 926 follows the 500-kyr oscillations of global δ^{13} C records[3], possibly signifying a global carbon cycle control on Atlantic water mass chemistry. B/Ca data from ODP Sites 805 and 806 from the Ontong Java Plateau will determine if there were globally coherent changes in deep ocean carbonate chemistry across the MPT. [1]Pena, L.D. & Goldstein, S., Science, 345, 318-319. [2]Hönisch, B. et al. (2009) Science, 324, 1551-1553. [3] Wang, P. et al. (2003), Geology, 31, 239-242.