He, CO₂, and δ^{13} C variations during a mid-ocean ridge eruptive event

DAVID W. GRAHAM¹, PETER J. MICHAEL², KENNETH H. RUBIN³

- ¹ College of Earth, Ocean, and Atmospheric Sciences Oregon State University, Corvallis, OR 97331
- ² Department of Geosciences, The University of Tulsa Tulsa, OK 74104
- ³ Department of Geology & Geophysics, SOEST University of Hawaii. Honolulu, HI 96822

We report ³He/⁴He, He and CO₂ concentrations for the dissolved (glass) and vapor (vesicle) phase of basalts, plus δ^{13} C of vesicles, for a suite of 23 lavas from the 2005-2006 eruption on the East Pacific Rise. This sample suite provides a rare opportunity to study magma recharge along the midocean ridge system and to quantify degassing prior to and during a single eruptive event. Our study covers the spatial and temporal extent of the months-long eruption (ages from ²¹⁰Po-²¹⁰Pb dating). ³He/⁴He is in isotopic equilibrium between vesicles and glass (mean = $8.51\pm0.04(1\sigma)$ R_A). Vesicle He and CO₂ concentrations vary by factors of 17 and 230, respectively. Nearly all samples lie in a narrow range of 280-370 ppm for total CO₂ (vesicles+glass), suggesting volatile saturation at ~1.5 km depth in the crust, similar to depths of the seismically imaged magma lenses. Vapor phase CO₂/He co-varies positively with the fraction of CO₂ contained in vesicles (r²=0.94) due to kinetic fractionation between He and CO2 during vesiculation. There is no evidence for kinetic fractionation of ¹³C from ¹²C. Vesicle δ^{13} C varies negatively with fraction of CO₂ in vesicles $(r^2=0.83)$, ranging from -2.6 to -5.0 %, and straddles the isotope composition of EPR vent fluids. The ¹³C-enrichment during CO₂ exsolution from the basaltic melt is similar to experimentally determined fractionation factors. Collectively the observations are explained by quasi-closed-system degassing, where melt ascent from the magma lens was sufficiently rapid that minimal bubble loss occurred during the eruption and flow of lava onto the seafloor.