Re-Os geochemistry of cherts and chalks spanning the K-Pg, Stevns Klint, Denmark

VINEET GOSWAMI1*, HOLLY J. STEIN1,2, JUDITH L. HANNAH1,2

1 AIRIE Program, Colorado State University, Fort Collins, CO 80523-1482, USA [vineet.goswami@colostate.edu]
2 Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0316 Oslo, Norway

The coastal chalk cliffs at Stevns Klint, Denmark, expose the stratigraphic succession straddling the Cretaceous-Paleogene (K-Pg) boundary [1]. Here the K-Pg “Fish Clay” boundary layer hosts the classic Ir anomaly linked to the 66 Ma Chixculub meteorite impact [2,3]. Chalk successions above and below the K-Pg boundary in northern Europe also feature beds of nodular chert formed by dissolution of chalk.

To study the variation in marine 187Os/188Os across the K-Pg boundary; samples of chalk and chert were analyzed over a 3-meter section centered on the Fish Clay. Initial Os isotopic compositions (Os$_i$) vary significantly across the K-Pg boundary, dropping to a low of ~0.2, correlative with the impact horizon, and recovering to ~0.4 two meters above the Fish Clay. Os$_i$ records across the K-Pg boundary from deep marine sections fall close to a mixing hyperbola defined by Upper Cretaceous carbonates (Os ~50 pg/g, 187Os/188Os ~0.4) and chondritic material (Os ~1000 ng/g, 187Os/188Os ~0.127) [4]. In contrast, our shallow-water Fish Clay data are displaced from the hyperbola toward higher Os$_i$ for a given Os concentration. This may be explained by (i) post-depositional loss of Re due to oxidation, (ii) input of highly radiogenic ejecta fallout from vaporization of crustal rocks at the Chixculub impact, (iii) tsunamiite addition of distal marine organic-rich muds, (iv) significant input of soot, and/or (v) post-depositional mixing of local chalk detritus with the clay at the impact horizon.

We also explored the potential for Re-Os dating in cm- to dm-scale chert nodules, given their fresh, glassy character. Most have very low Re and Os concentrations, but multiple splits from two black chert nodules yield a Model 3 isochron age of 66.4 ± 3.7 Ma, with an Os$_i$ of 0.34. Large uncertainty on the chert age may reflect (i) variable Os$_i$ during genesis and/or (ii) time required for closure of the system. The approach holds promise.

Funding from CHRONOS: Eni Norge, Lundin, AkerBP.