Radiogenic ⁴⁰Ca in Seawater

MICHAEL A. ANTONELLI¹, DONALD J. DEPAOLO^{1,2}, Shaun T. Brown^{1,2}, Nicholas J. Pester^{1,2}

¹Department Earth and Planetary Science, UC Berkeley *mantonelli@berkeley.edu

²Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

The sources and sinks of seawater Ca are of interest for understanding paleoseawater chemistry and the global carbon cycle. Radioactive ⁴⁰K is concentrated in continental crust, and continental crustal rocks show enrichments in radiogenic ⁴⁰Ca [1]. The composition of the oceans reflects competition between continental and seafloor weathering inputs.

Measurements of crustal rocks suggest that the modern oceans are likely to be enriched in ⁴⁰Ca by 1.5 epsilon units ($\varepsilon_{Ca} = +1.5$) relative to the mantle [1]. However, recent work [2] concluded that there were no differences between seawater, oceanic crust, and the reference material SRM915a, and that marine carbonates show no resolvable ε_{Ca} variations through geologic time [2]. This latter result implies that seawater ⁴⁰Ca is completely buffered by exchange with ocean floor rocks over all of Earth history, and is not consistent with other estimates of modern Ca fluxes [1].

We report ε_{Ca} measurements in SRM915a, modern seawater (GEOTRACES seawater standard), a USGS carbonate standard (EN-1), USGS dolerite standards (DNC-1 and W2-a), and modern hydrothermal vent fluids, and find, by aggregating the results of ca. 10-15 analyses each, that seawater and SRM915a have $\varepsilon_{Ca} = +1.4 \pm 0.5$ relative to the igneous rock standards ($\varepsilon_{Ca} = 0 \pm 0.3$). Hydrothermal fluid from Lost City vent has $\varepsilon_{Ca} = -0.1 \pm 0.6$ indicating almost all of its Ca is from ocean floor basalt as expected.

Our results indicate that SRM915a is a poor reference for evaluating excess ⁴⁰Ca or estimating fluxes in the global Ca cycle [2]. The appropriate reference is bulk silicate Earth (BSE), and this can be defined by modern oceanic basalts and certain meteorites [1,3-5]. Riverine Ca inputs to the ocean are much larger than those from MOR hydrothermal systems, and the riverine input is probably augmented by marine carbonate diagenesis and continental groundwater [1]. These considerations, and estimates of upper crustal ε_{Ca} values of about +2 to +3, are consistent with our measurement of modern seawater. Paleoseawater ε_{Ca} may be sensitive to past changes in the Ca cycle.

[1] DePaolo (2004) RiMG 55, 255-288 [2] Caro et al. (2010) EPSL 296, 124-132 [3] Schiller et al. (2012) J. Anal. At. Spectrom. 27, 38-49 [4] Simon et al. (2009) Ap. J. 702, 707-715. [5] He et al. (2016) Geostan. Geoan. Res., 1-20.