Heavy δ^{30} Si in Archean granitoïds as evidence for supracrustal components in their sources

LUC ANDRÉ¹, KATHRIN ABRAHAM², STEPHEN F. FOLEY³, AND AXEL HOFMANN⁴

¹ Earth Sciences Department, Royal Museum for Central Africa, Leuvensesteenweg 13, Tervuren, Belgium.

² University of Oxford, Department of Earth Sciences, Oxford, United Kingdom

- ³Dept. Earth and Planetary Sciences, Macquarie University, North Ryde 2109, Australia.
- ⁴ Department of Geology, University of Johannesburg, South Africa.

We report δ^{30} Si data from 37 samples of 17 Archaean (3.5-2.7Ga) felsic intrusive rocks from the Kaapvaal craton. They are representative of three types of plutons: (a) Trondhjemite-Tonalite-Granodiorite (TTG) (n=13); (b) Granite-Monzogranite-syenogranite (GMS) (n=15); (c) composite TTG-GMS (n=9). Two to 4 aliquots of each specimen powder were prepared to control the full chemical reproducibility. Each aliquot solution was then analysed 7 to 12 times on two MC-ICP-MS instruments (Nu Plasma II and Thermo Neptune) with an average reproducibility $(2\sigma_M)$ of 0.05%. In terms of their average δ^{30} Si, we find no resolvable isotopic differences between TTGs. TTG-GMSs and GSMs $\delta^{30}Si = -0.01 \pm 0.07\% (\pm 2\sigma_X), -0.02 \pm 0.09\%, -0.02 \pm 0.13\%,$ respectively], but they all contrast significantly with coevally run data for the GA granite standard (δ^{30} Si=-0.22±0.08‰). The grand average for these Archaean plutons (δ^{30} Si= -0.02 ± 0.02 %, $\pm2\sigma_{\rm M}$ for n=37) is significantly heavier than Phanerozoic I- and A-type granites (δ^{30} Si=-0.19±0.02‰, $\pm 2\sigma_{M}$ for n=27 [1,2]), and rhyolitic liquids differentiated from basalts (δ^{30} Si=-0.19±0.02‰ [3]). We do not see any significant δ^{30} Si trends with pluton age and SiO₂ contents, nor with the large variations in La_N/Yb_N (5 to 68) and Sr/Y (0.25 to 250). Therefore, melting or crystallisation in the garnet or plagioclase stability fields can be ruled out as a cause for this heavy signature, the origin of which must be rooted in the source protoliths. Our preferred explanation is the melting of recycled silicified basalts (δ^{30} Si: +0.49±0.54‰ [4]) and cherts (δ^{30} Si: +0.60±0.44‰ [4]) which are common supracrustal rocks during the Eo- and Paleo- Archean Era.

[1] Savage et al. (2012) GCA 92, 184-202. [2] Poitrasson & Zambardi (2015) GCA 167, 301-312. [3] Savage et al. (2011) GCA 75, 6124-6139 [4] Abraham et al. (2011) EPSL 301, 222-230.