Kinetic controls of spodumene and petalite stability: A preliminary investigation

FILIPA C. DIAS^{*1}, MONA-LIZA SIRBESCU¹, JAMES J. STUDENT¹, ALEXANDRE LIMA², ENCARNACION RODA-ROBLES³

 ¹Earth and Atmospheric Sciences, Central Michigan Univ., Mount Pleasant, MI USA (<u>dias1fc@cmich.edu</u>, <u>sirbe1mc@cmich.edu</u>, <u>stude1jj@cmich.edu</u>)
²ICT-Univ. of Porto, Porto, Portugal (<u>allima@fc.up.pt</u>)

³Univ. Pais Vasco UPV/EHU, Leioa, Spain (encar.roda@ehu.es)

Lithium aluminum silicates spodumene (LiAlSi₂O₆) and petalite (LiAlSi₄O₁₀) are major lithium resources extracted from granitic pegmatites. Mining companies worldwide invest major efforts into lithium-pegmatite exploration. Iron contents can influence both the economic value and the P-T phase boundary between spodumene and petalite. Spodumene compositions compiled from the literature incorporate as much as 4.37 wt% Fe₂O₃ + FeO (mean of 0.54 \pm 0.79, N=56). We have surveyed various natural occurrences of Li,Al silicates in order to evaluate their compositional ranges in primary assemblages, secondary spodumene-quartz intergrowths (SQUI), and miarolitic assemblages.

We have conducted reconaissance cathodoluminescence (CL) and scanning electron microscopy (SEM) analyses on 15 spodumene and 6 petalite specimens from several world-famous pegmatites and pegmatite districts (Harding, N.M., Pala, CA, Tin Mountain, S.D., and Kings Mountain, N.C., USA; Minas Gerais, Brazil; Tanco, Manitoba and Yellowknife, Canada; Paprok Valley, Afganistan; Barroso-Alvão and Fregeneda, Portugal/Spain; etc.), in preparation for Laser Ablation ICP-MS analysis of minor and trace elements. CL petrography of primary petalite reveals the importance of fluid-assisted deformation in the nucleation and development of SQUI (see figure below).

