The hidden age of carbon released by peatlands

JOSHUA F. DEAN¹, MARK H. GARNETT², YPE VAN DER VELDE¹, OVE H. MEISEL¹ AND A. J. DOLMAN¹

¹Department of Earth Sciences, Vrije Universiteit

Amsterdam, the Netherlands

²NERC Radiocarbon Facility, East Kilbide, United Kingdom

Radiocarbon (14 C) is a key tracer for detecting the mobilization of previously stored terrestrial organic C into aquatic systems. But despite the presence of substantial old organic C (C >1,000 y B.P.) in peatland catchments, the 14 C age of dissolved organic C (DOC) in peatland streams (the main form of lateral C export in these systems) is predominantly modern. Old C may be 'masked' by postbomb C (fixed from the atmosphere post-AD1950), potentially rendering bulk aquatic DO¹⁴C measurements insensitive to old C. We investigate this with (1) a laboratory and (2) a field approach measuring natural abundance ¹⁴C of DOC, carbon dioxide (CO₂) and methane (CH₄).

(1) We collected DOC with a modern ¹⁴C signature from a temperate Scottish peatland stream and decomposed it to produce CO₂ under simulated natural conditions over 140 days. We measured the ¹⁴C of both DOC and CO₂ at seven time-points and found that while DOC remained close to modern in age, the resultant CO₂ was up to 2,350 y B.P. This demonstrates that bulk DO¹⁴C ages can hide the presence of old C within aquatic DOC export, potentially making this approach an insensitive indicator of disturbance.

(2) We also measured directly the ¹⁴C content of aquatic CO₂ and CH₄, alongside DOC and particulate-OC, in freshwater systems of the Canadian and Siberian Arctic tundra – the first such concurrent ¹⁴C measurements from freshwater systems. Modern C (assimilated since AD1950) appeared to dominate aquatic CO₂ and CH₄ emissions, except where deep ancient (6,000 to ~50,000 yBP) C was exposed. Age distribution modeling indicated that 'pre-industrial' C (assimilated prior to ~AD1750) comprised 15-40% of aquatic carbon export.

These results demonstrate the presence of 'hidden' aged C within peatland aquatic export. They also suggest that greater amounts of old C may be released into peatland aquatic systems than was previously thought, which has implications for tracing and modeling interactions between the hydrological and terrestrial C cycles.