Uranium-bearing, oscillatory-zoned hematite: assessing closed system behaviour for U-Pb systematics

L. COURTNEY-DAVIES¹*, C.L. CIOBANU¹, N.J. COOK¹, S.R. TAPSTER², D.J. CONDON², A.K. KENNEDY³, K. EHRIG⁴,

¹ School of Chemical Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia (correspondence*: liam.courtney-davies@adelaide.edu.au; cristiana. ciobanu@adelaide.edu.au; nigel.cook @adelaide.edu.au)

 ² NERC, British Geological Survey, Keyworth, U.K. (simont@bgs.ac.uk; dcondon@bgs.ac.uk)
³ John de Laeter Centre, Curtin University, Bentley, WA,

Australia (A.Kennedy@exchange.curtin.edu.au)

⁴ BHP Olympic Dam, Adelaide, SA 5000, Australia (Kathy. J.Ehrig@bhpbilliton.com)

Oscillatory-zoning with respect to U in mineral geochronometers requires nanoscale assessment as such patterns may reflect an overprinting event. Addition/loss of elements (opensystem behaviour) disturb isotopic ratios used for U-Pb systematics. ²⁰⁷Pb/²⁰⁶Pb isotope mapping of coarse hematite from the Olympic Dam deposit, South Australia, shows ~1.6 Ga age homogeneity across oscillatory-zoned, U-bearing domains [1]. ID-TIMS analysis carried out on material microsampled from one such grain, up to ~1 mm apart, give approxximately identical ²⁰⁷Pb/²⁰⁶Pb ages (unpubl. data). To asses open or closed system behaviour for U-Pb systematics, the same grain was chemically mapped (Fig. 1a) prior to HAADF-STEM study carried-out on a FIB-prepared foil cut across Ubands. The sample is free of inclusions (Fig. 1b) and atomicresolution imaging shows crystallinity with no lattice damage induced by α -decay (Fig. 1c). We conclude such grains preserve a near closed system from crystallization at ~1.6 Ga.

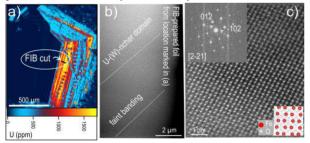


Fig. 1. (a) LA-ICP-MS map for U in hematite and location of FIB-cut. HAADF-STEM images shows a lack of inclusions (b) or α -decay induced damage. SAED for (c) in upper inset; atom model for hematite on the same [2-21] zone axis. Images at 200 Kv (Titan Themis, Adelaide Microscopy).

[1] Courtney-Davies, L. et al. (2017) Goldschmidt conference abstract