A new decay constant for 184Os and evidence for p-process heterogeneity of 180W in iron meteorites

D. L. COOK1, T. SMITH2, I. LEYA2, C. HILTON3, R. J. WALKER3, AND M. SCHÖNBÄCHLER1

1 Institute for Geochemistry and Petrology, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
 (*correspondence: david.cook@erdw.ethz.ch)
2 Space Science and Planetology, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
3 Department of Geology, University of Maryland, 8000 Regents Dr., College Park, MD 20742

Introduction: Variations in 180W occur in iron meteorites from a wide range of magmatic groups; however, their origin is debated. Excess 180W has been ascribed to p-process heterogeneity in the nebula [1], radioactive decay of 184Os [2], and spallogenic production from exposure to galactic cosmic rays (GCR) [3]. Five IIAB irons were chosen from different positions in the crystallization sequence [4] to determine the magnitude of the relative contributions to 180W excesses from the various proposed sources.

Methods: Tungsten isotopes were measured by MC-ICPMS at ETH Zürich [5]. Noble gases were measured at the University of Bern [6]; cosmogenic radionuclide analyses were carried out at the DREAMS facility in Dresden [7]. Trace element concentrations were determined at the University of Maryland [8]. The model for GCR effects on W isotopes [3,9] was improved to include spallation effects from Pt and Ir.

Results and Discussion: CRE ages, based on 36Cl-36Ar, were used with trace element concentrations (Os, Re, Ir, Pt, W), measured ε^{180}W and ε^{182}W values, and our new GCR model to correct ε^{180}W values for effects from neutron capture and spallation reactions. The corrected values correlate with Os/W ratios and define a decay constant for 184Os of $(2.22 \pm 1.10) \times 10^{-14} \text{ a}^{-1}$, a value smaller than previously suggested [2,3]. The isochron intercept (ε^{180}W$_i = 0.64 \pm 0.35$) differs significantly from the terrestrial value and provides the first cogent evidence for p-process variability in W isotopes in the early solar system.