Stable isotope analysis using molecular absorption spectrometry

- C. ABAD^{*1,2,3}, S. FLOREK¹, H. BECKER-ROSS¹, M.-D. HUANG¹, H.-J. HEINRICH², S. RECKNAGEL², J. VOGL², N. JAKUBOWSKI^{2,3}, U. PANNE^{2,3}
- ¹ Leibniz-Institut f
 ür Analytische Wissenschaften ISAS e.V., Department Berlin, Schwarzschildstra
 ße 8, 12489, Berlin, Germany
- ²Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
- ³Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof (SALSA), Unter den Linden 6, 10099, Berlin, Germany

*Correspondence: Carlos.Abad@bam.de

We propose an alternative faster and low-cost optical method for isotope analysis: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS).

Stable isotope amount composition of X = Li, B, Mg, Caand Sr were determined by monitoring the absorption spectra of their in situ generated mono-hydrides (XH) in graphite furnace HR-CS-MAS. Isotopes of boron (¹⁰B and ¹¹B) were studied via their hydrides for the electronic transition $X^{1}\Sigma^{+} \rightarrow A^{1}\Pi$ (Fig. 1a). The spectrum of a given sample is a linear combination of the ¹⁰BH molecule and its isotopologue ¹¹BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library is built by using samples with known isotope composition. Results with an accuracy of 0.15 ‰ are metrologically compatible with those reported by mass spectrometric methods [1]. Similar results are obtained for nisotope systems like Mg (²⁴Mg, ²⁵Mg, and ²⁶Mg), where isotope shifts of their isotopologues can be resolved as shown in Fig.1b. The extension of this methodology to other elements like Li, Ca and Sr is discussed [2].

Fig.1. (a) Comparison of the average spectra of ${}^{11}BH$ (${}^{11}B$ relative isotope abundance 99%) and ${}^{10}BH$ (${}^{10}B$ 98%). (b) Comparation of the spectra of ${}^{24}MgH$, ${}^{25}MgH$ and ${}^{26}MgH$.

[1] C. Abad *et al.*, Spectrochim. Acta, Part B, 136 (2017) 116-122. [2] C. Abad *et al.*, unpublished results, 2018.