Nitrogen isotope fractionation during gas-particle conversion of NO_x to NO₃⁻ in the atmosphere – implications for isotope-based NO_x source apportionment

Yanlin Zhang 1, Yunhua Chang 2, Moritz F. Lehmann 3

 ¹ Nanjing University of Information Science and Technology, Nanjing 10044, China; dryanlinzhang@outlook.com
² Nanjing University of Information Science and Technology, Nanjing 10044, China; changy13@nuist.edu.cn
³ University of Basel, Basel 4056, Switzerland; moritz.lehmann@unibas.ch

Atmospheric fine-particle (PM_{2.5}) pollution is frequently associated with the formation of particulate nitrate (pNO₃⁻). the end product of the oxidation of NO_x gases (=NO+NO₂) in the upper troposphere. Here we determined the $\delta^{15}N$ values of fresh pNO₃⁻ (δ^{15} N-pNO₃⁻) in PM_{2.5} at a rural site in Northern China, where atmospheric p NO3⁻ can be attributed exclusively to biomass burning. The observed δ15N-pNO₃- $(12.17\pm1.55\%; n=8)$ was much higher than the N isotopic source signature of NOx from biomass burning $(1.04\pm4.13\%)$. The large difference between $\delta 15$ N-pNO₃⁻ and $\delta 15$ N-NO_x $(\Delta(\delta 15N))$ can be reconciled by the net N isotope effect (ϵN) associated with the gas-particle conversion from NOx to NO3-. For the biomass-burning site, a mean ϵN ($\approx \Delta(\delta 15N)$) of 10.99±0.74‰ was assessed through a newly-developed computational quantum chemistry (CQC) module. A second, slightly higher CQC-based mean value for εN (15.33±4.90‰) was estimated for an urban site with intense traffic in Eastern China, and integrated in a Bayesian isotope mixing model to make isotope-based source apportionment estimates for NOx at this site. Based on the δ 15N values (10.93 \pm 3.32‰, n=43) of ambient pNO3⁻ determined for the urban site, and considering the location-specific estimate for EN, our results reveal that the relative contribution of coal combustion and road traffic to urban NO_x are $32\pm11\%$ and $68\pm11\%$. respectively. Our investigations also show that, without the consideration of the N isotope effect during pNO3⁻ formation, NOx is derived almost entirely from coal combustion. Similarly, NO_x emissions from coal combustion may be substantively overestimated (by >54% on average) when the N isotope fractionation during atmospheric pNO3⁻ formation is neglected.