First-principle Calculation of Equilibrium Isotopic Fractionation for Alkali Metal-bearing Minerals

HAO ZENG¹, NICOLAS DAUPHAS¹, GIULIA GALLI²,³

¹Origins Lab, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago (dauphas@uchicago.edu)
²Institute for Molecular Engineering, The University of Chicago
³Materials Science Division, Argonne National Laboratory, IL

Potassium is an important element in geochemical and cosmochemical studies but its isotope geochemistry has been largely unexplored due to analytical difficulties in K isotope measurement. Analytical developments now allow one to measure K isotopic composition with a sufficient precision to resolve naturally occurring isotopic variations[1]. Interpretation of experimental results, however, requires a good understanding of the equilibrium isotopic fractionation factors associated with various geological processes.[2] The experimental determination of equilibrium fractionation factors is not straightforward as experiments can suffer from kinetic isotope effects.

DFT based first-principle calculation has been proven to be a powerful tool to model various material properties, in particular isotopic fractionation under equilibrium condition.[3] We will present theoretical results on potassium and rubidium-bearing minerals, compare those to experimentally determined values, and discuss their implications.

Our preliminary results on rubidium substituted orthoclase minerals suggested that the fractionation of rubidium is approximately 20% of that of potassium, which agreed well with the recent measurement from Pringle and coworkers.[4]

REFERENCES
This abstract is too long to be accepted for publication. Please revise it so that it fits into the column on one page.