Adsorption behavior of MoO₄²⁻ on

α -Al₂O₃ and δ -MnO₂

T. YOKOYAMA^{1*}, D. KAWAMOTO^{1,2*}, T. SHINJO¹,

A. MIYAZAKI²,

¹Kyushu Univ. 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan(*correspondence:yokoyamatakushi@chem.kyushuuniv.jp)

²Japan Women's Univ. 2-8-1, Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan

(*correspondence:kawamotod@fc.jwu.ac.jp)

Introduction

In order to understand the behavior of trace elements in hydrosphere, it is important to investigate their adsorption behavior on ubiquitous minerals. In this investigation, the adsorption behavior of MoO₄²⁻ (Mo) on α -Al₂O₃ (Al₂O₃) and δ -MnO₂ (MnO₂) was investigated. We found that the adsorption behavior of Mo is significantly different between Al₂O₃ and MnO₂ in spite of the same specific surface area.

Discussion of Results

[Adsorption experiment]

The amount of Mo adsorbed on MnO_2 was significantly larger than that on Al_2O_3 . The amount of Mo adsorbed on Al_2O_3 decreased with increasing pH in the range of 4.5 - 8, while the amount of Mo adsorbed on MnO_2 was not affected by pH and was almost constant.

[Adsorption structure]

The adsorption structure of Mo on Al₂O₃ and MnO₂ was examined by Mo L₃-edge X-ray absorption spectroscopy. Mo dissolves as a tetrahedral MoO_4^{2-} in aqueous solution with low concentration. The Mo adsorbed on Al₂O₃ and MnO₂ exsited as tetrahedral MoO₄ species and octahedral MoO₆ species, respectively.

[A proposed adsorption mechanism]

Judging from the pH dependence for the adsorption and the adsorption sturacture of Mo, Mo is adsorbed on Al₂O₃ by the electrostatic interaction, called physical adsorption. As a result, there was no stractural change of Mo before and after adsorption. On the other hand, Mn^{2+} was unexpectedly released in solution during Mo was adsorbed on MnO₂. The fact suggests that the adsorption of Mo on MnO₂ may be due to incorporation of Mo into MnO₂ framework structure (isomorphous substitution with Mn⁴⁺) as a MoO₆ unit. The difference in the adsorption mechanism of Mo between Al₂O₃ and MnO₂ is considered to reflect the difference in the amount of Mo adsorbed.