Cluster formation of dissolved Si and its effect on the mobility of Si

T. YOKOYAMA¹ AND H. SAKUMA²

¹ Graduate School of Integrated Arts and Sciences, Hiroshima University, Japan, t-yokoyama@hiroshima-u.ac.jp

² National Institute for Materials Science, Japan,

SAKUMA.Hiroshi@nims.go.jp

Information of the mobility and chemical behavior of dissolved Si is essential for understanding water-rock interaction. The charge and polymerization degree of dissolved Si vary depending on pH and Si concentration, which leads to a large difference in diffusivity^[1]. For neutral pH at ambient temperature, thermodynamic calculation predicts that dissolved Si exists almost exclusively as monomeric Si(OH)₄. A molecular dynamics (MD) simulation to evaluate the self-diffusion coefficient D_{aq} of Si(OH)₄, K⁺ and Cl⁻ in water (Fig. 1a) showed that if plural Si(OH)₄ molecules were inserted in a cell then Si(OH)₄ molecules assembled and moved as a cluster without forming Si-O-Si bond. The value of $D_{aq,Si}$ obtained under the presence of four $Si(OH)_4$ molecules in a cell was ~20% smaller than that obtained for single Si(OH)₄ molecule. The variations of $D_{aa,K}$ and $D_{aq,Cl}$ with increasing the numbers in a cell were within the margin of error. Experiments to evaluate the effective diffusion coefficient D_e of Si, K⁺ and Cl⁻ in rock pore water at pH 5–7 and 25°C showed that $D_{e,Si}$ was smaller than $D_{e,K}$ and $D_{e,Cl}$ by a factor of 2.3–3.0 and this extent was greater than predicted from differences of $D_{\rm aq,Si}$, $D_{\rm aq,K}$ and $D_{\rm aq,Cl}$ (a factor of 1.7)^[2]. Considering the result of MD simulation, a reason of the slow diffusion of Si compared with K⁺ and Cl⁻ in the experiments may be the presence of Si cluster (Fig. 1b).

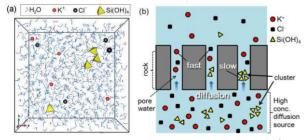


Fig. 1. (a) Snapshot of MD simulation. Four Si(OH)₄, K^+ , Cl⁻ were inserted in a cell containing 1000 H₂O. Three Si(OH)₄ are forming a cluster, while K and Cl are moving individually. (b) A schematic of diffusion of Si, K and Cl in pore water.

[1] Yokoyama T. and Sakuma H. (2018) Geochim. Cosmochim. Acta 224, 301-312.

[2] Yokoyama T. (2013) Water Resour. Res. 49, 8299-8309.