¹²⁹I/¹²⁷I ratios in precipitation from Fukushima over 2010-2017

SHENG XU^{1,*}, STEWART P.H.T. FREEMAN¹, XIAOLIN HOU², AKIRA WATANABE³ AND KATSUHIKO YAMAGUCHI³

¹Scottish Universities Environmental Research Center, East Kilbride, G75 0QF, UK (*Correspondence: sheng.xu@glasgow.ac.uk)

²Center for Nuclear Technologies, Technical University of Denmark, 4000 Roskilde, Denmark

³Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan

The precipitation samples were monthly collected over a period between November 2010 and December 2017 from the Fukushima University campus (37°41'00"N, 140°27'16"E), located about 60 km northwest of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP). The ¹²⁷I and ¹²⁹I concentrations have been determined in order to examine the temporal variations of atmospheric level and behaviour of stable and radioactive iodine before and after the FDNPP accident occurred on 11th March 2011. The ¹²⁷I and ¹²⁹I concentrations in 2010-2017 varied from 0.5 to 10 µg/L and from 3×10⁷ to 8×10¹¹ atoms/L, respectively, resulting in ¹²⁹I/¹²⁷I atomic ratio ranges from 4×10⁻⁹ to 7×10⁻⁵.

Before the FDNPP accident, the deposited ¹²⁹I in Fukushima was generally attributed to originate from the global ¹²⁹I source mainly from the European reprocessing plants. The ¹²⁹I concentration of 10⁸ atoms/L in 2010 before the accident dramatically increased about four orders of magnitude to 7.6×10^{11} atoms/L in March 2011 immediately after the accident with a ¹²⁹I/¹²⁷I ratio up to 7×10^{-5} . Soon after the accident, the ¹²⁹I concentrations in precipitation decreased exponentially with several fluctuations, which can be attributed to initial Fukushima-derived ¹²⁹I dispersion, local resuspension of the Fukushima-derived radionuclide bearing soil particles deposited on land surfaces, and re-emission through vegetation taking up ¹²⁹I from contaminated soil and water.

After 2013, the ¹²⁹I deposition fluxes decreased gradiently to approach the pre-accident level. During this period, although the Fukushima-derived ¹²⁹I was still considered as the major source of local atmopsheric ¹²⁹I by resuspension and reemission during spring-summer, the long-term variations of ¹²⁹I in precipitation might be partly attributed to temporal changes in on-going discharges of ¹²⁹I from west European reprocessing plants in conjunction with the trajectories of airstreams prevailing over Japan at the time of sampling.