DFT Investigations for Mechanisms of the TCEP Degradation by Hydroxyl Radical

Hui XiA ${ }^{1}$, Y.S. Yang ${ }^{* 1}$, W.J. Zhang ${ }^{2}$

${ }^{1}$ Key Laboratory of Regional Contaminated Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang 110044, P. R. China (*correspondence: yangyuesuo@jlu.edu.cn)
${ }^{2}$ College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

Tris (2-chloroethyl) phosphate (TCEP) is one of the organophosphorus esters which are emerging environmental contaminants widely applied as annexing agents in a variety of industrial products and robust against conventional wastewater treatments ${ }^{[1]}$. However, it could be decomposed by hydroxyl radicals ($\mathrm{OH} \cdot$) which can be generated in $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ or $\mathrm{UV} / \mathrm{TiO}_{2}$ photocatalytic systems. In our present attempts, two pathway mechanisms (see Figure 1), namely attack of $\mathrm{OH} \cdot$ to one of the $\mathrm{P}-\mathrm{O}$ bonds via Channel 1 or to one of the C-O bonds via Channel 2, were established by using the density functional theory (DFT) method. Based upon the typical geochemical conditions, the computational results indicate that the energy barrier via Channel $1(\Delta G=$ $24.8 \mathrm{kcal} / \mathrm{mol}$) is significantly lower than that via Channel 2 ($\Delta G=54.7 \mathrm{kcal} / \mathrm{mol}$), demonstrating that Channel 1 is more favourable. In the investigation of the mechanism to obtain product B in Figure 1, the energy barrier was calculated as $28.9 \mathrm{kcal} / \mathrm{mol}$, which is in excellent agreement with the experimental observations of others that product A is preferentially to be detected over product $\mathrm{B}^{[2-4]}$. These are important for degradation insight of emerging contaminants.

Figure 1: Possible pathways of TCEP degradation with OH -

Acknowledgments: This work was supported by the NSFC (Grant nos. 41472237, 41703120 and 41703125)
[1] HS Ou et al. Chem. Eng. J. 308 (2017) 386. [2] J Ye et al., Wat Res. 124 (2017) 29. [3] J Liu et al., Chemo. 190 (2018) 225. [4] X Xu et al., Chemo. 185 (2017) 833.

