Density Functional Theory Calculations on Anorthite-SO₂-H₂O

HEATH D. WATTS AND JAMES D. KUBICKI¹

¹Department of Geological Sciences, The University of Texas at El Paso, jdkubicki@utep.edu

This presentation describes the models and results of calculations performed to understand the interaction of anorthite in the presence of SO₂, or SO₂ + H₂O. Henley et al.^[1] proposed that porphyry copper formation could occur due the H₂S_(g) from magmatic gas plumes reacting with Cu²⁺ in groundwater. The hypothesized source of the H₂S_(g) is from the reaction of the calcic-feldspar mineral anorthite (CaAl₂Si2O₈) and magmatic SO_{2(g)}^[1]. In anhydrous conditions, those authors provided experimental evidence suggesting that this reaction dominates^[1]:

 $2\text{CaAl}_2\text{Si2O}_8 + 3\text{SO}_{2(g)} \rightarrow 2\text{CaSO}_4 + 2\text{Al}_2\text{SiO}_5 + 2\text{SiO}_2 + 0.5\text{S}_{2(g)} \text{ (Reaction 1)}$ When H₂O is present, the reaction is $3\text{CaAl}_2\text{Si2O}_8 + 4\text{SO}_{2(g)} + \text{H}_2\text{O}_{(g)} \rightarrow 3\text{CaSO}_4 + 3\text{Al}_2\text{SiO}_5 + 3\text{SiO}_2 + \text{H}_2\text{S}_{(g)} \text{ (Reaction 2)}$

 $H_2S_{(g)}$ is more stable than $S_{2(g)}$, when H_2O exists and reaction (2) is spontaneous. Reaction (2) could provide a source of $H_2S_{(g)}$ to react with Cu²⁺ to form copper sulfides.

Three hypothesized pathways for this mechanism are explored:

- 1. *Hypothesis 1* The $SO_{2(g)}$ molecules in reaction (1) react to form SO_{4^2} that reacts with Ca^{2+} to form anhydrite.
- 2. Hypothesis 2 $SO_{2(g)}$ reacts with Ca^{2+} through dipole-ion interactions to excise Ca^{2+} from the surface prior to $CaSO_4$ formation.
- Hypothesis 3 H₂O molecules interact with the SO_{2(g)} molecules in reaction (2) to form sulfuric acid, that reacts with the anorthite surface.

[1] Henley RW, King PL, Wykes JL, Renggli CJ, Brink FJ, Clark DA, Troitzsch U (2015) Nature Geoscience 8:210–215.