Oxyanion control on boron incorporation into inorganic calcite.

JOJI UCHIKAWA¹, DUSTIN T. HARPER², JAMES C. ZACHOS², AND RICHARD E. ZEEBE¹

¹Dept. of Oceanography, Univ. of Hawaii, Honolulu, HI 96822, USA (*correspondence: uchikawa@hawaii.edu, zeebe@hawaii.edu)

²Dept. of Earth & Planetary Sciences, UC Santa Cruz, Santa Cruz, CA 95064, USA (dtharper@ucsc.edu, jzachos@ucsc.edu)

Precise understanding of the fluid-CaCO₃ B partitioning mechanism is crucial for using $\delta^{11}B$ and B/Ca of marine biogenic CaCO₃ as a reliable proxy for ocean pH and CO₂ chemistry. Yet, it is a challenging task as there are numerous factors influencing B incorporation. For example, salinity has been shown to influence the extent of B incorporation (B/Ca). Because the salinity effect has been recognized both in planktic foraminifers and in inorganic calcite grown in synthetic seawater [1~3], it calls for a common nonbiological mechanism. It has been previously argued that the effect is rooted in charge compensation by Na⁺ via coupled $CO_3^{2-}/B(OH)_4^{-}$ and Ca^{2+}/Na^{+} substitution in CaCO₃ [4]. However, given much higher abundance of Na⁺ over B in natural and synthetic seawater to begin with, it is questionable if Na⁺ variations via salinity changes can induce notable changes in B/Ca. Also, we previously found that PO4³⁻ enhances B incorporation into inorganic calcite [3]. This leads us to hypothesize that the presence of certain oxyanions may enhance B incorporation, and therefore the salinity effect on B/Ca may be driven by SO42-, which is the most abundant oxyanion in seawater.

Indeed, in our new set of laboratory experiments, we observed enhanced B incorporation into inorganic calcite when Na₂SO₄ is added to growth solutions. In contrast, addition of the same mole-equivalence of Na⁺ from NaCl caused negligible changes in B/Ca. The effect was also evident when, instead of Na₂SO₄, K₂SO₄ was used as the SO₄²⁻ source. These lines of evidence make a strong case that the effect is in fact driven by SO₄²⁻. Furthermore, we are currently conducting additional experiments to address whether oxyanions other than SO₄²⁻ would likewise cause an increase in B/Ca. Preliminary results from these experiments will also be featured in this presentation.

[1] Allen et al. (2012) EPSL, 351-352, 270-280. [2] Henehan et al. (2015) G-Cubed, GC005514. [3] Uchikawa et al. (2017) GCA, 218, 291-307. [4] Balan et al. (2016) GCA, 193, 119-131.