A novel method for creating mineral isotopic reference materials to improve solar system radiochronometry, e.g., ⁵³Mn-⁵³Cr

MARK A. TYRA¹

¹National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA (mark.tyra@nist.gov)

Many radiochronometric dating methodologies are impeded by the less-than-optimal amounts of target nuclides in a reference material. For example, ⁵³Mn-⁵³Cr isotope systematics in carbonates have been used to explore the timing of formation of early solar system minerals using, for example, SIMS. Unfortunately, the low concentration of Cr in terrestrial carbonates negatively impacts the measurement uncertainty if they are used as isotope reference materials (iRMs).

This sudy presents a method to make carbonate iRMs with naturally in-grown Cr by using short-lived 52 Mn (t_{1/2} = 5.591 (3) days) or ⁵⁴Mn ($t_{1/2}$ = 312.12 (6) days) which are mixed with stable ⁵⁵Mn in the solution from which the carbonates are precipitated. The ⁵²Mn and ⁵⁴Mn are synthesized for use in PET imaging and treatment of cancer [1]. Because both Mn radionuclides are commercially available, both decay directly to stable Cr isotopes ($^{54}Mn \Rightarrow$ ${}^{54}Cr$, ${}^{52}Mn \implies {}^{52}Cr$), both have reasonably short half-lives, and both (being Mn isotopes) are chemically similar to stable ⁵⁵Mn, the combining of these Mn isotopes with ⁵⁵Mn to produce synthetic calcite allows Mn to be incorporated in the carbonate crystal structure and allows Cr to subsequently be incorporated. Calcite synthesis, including the incorporation of trace Mn. is a relatively simple procedure [2-4] and the first test batches have been grown. Dolomite synthesis will be more challenging [5-7]. After synthesizing and evaluating the carbonates produced with non-radioactive ⁵⁵Mn, the potential for synthesizing carbonate minerals with in-grown stable Cr from radioactive Mn will be evaluated. The use of short-lived radioactive isotopic materials could open new opportunities for creating specialized iRMs; carbonates are only the beginning.

[1] Wooten, et al., (2015) *ARI* **96**, 154-161; [2] Lemarchand et al., (2004) *GCA* **68**, 4665-4678; [3] Reeder et al., (1996) *ESR* **29**, 29-46; [4] Gruzensky (1967) *Crystal growth*, 365-367; [5] Ichimura and Sugiura (2015), *LPSC* abs# 1795; [6] Arvidson and Mackenzie (1999) *Am J Sci* **299**, 257-288; [7] Lumsden et al., (1989) *GCA* **53**, 2325-2329.