S isotope fractionations in volcanic aqueous systems on Earth and Mars

SZYNKIEWICZ, A.¹, GOFF F.², VANIMAN D.³, FAIIA A.M.¹, PRIBIL M.⁴

¹University of Tennessee, Knoxville, 1621 Cumberland Ave., Knoxville, TN 37996 (<u>aszynkie@utk.edu</u>), ²University of New Mexico, ³Planetary Science Institute, ⁴United States Geological Survey

First in situ sulfur (S) isotope measurements of the Martian bedrock by the Curiosity rover resulted in a wide range of δ^{34} S values (-47 to +28‰) exceeding those previously measured for Martian meteorites ($\sim 0\pm 2\%$). suggesting complex hydrothermal-atmosphere interaction on regional scales (Franz et al. 2017). It is unclear whether aqueous S cycling might contribute to these large isotope fractionations and how aqueous systems respond to S heterogeneity of the volcanic reservoir. To better understand S isotope fractionations and SO₄ cycling in volcanic systems, we selected a watershed of Valles Caldera in New Mexico USA as Martian geochemical-hydrological analog. Using isotope compositions of various S forms present in the surface water, groundwater, precipitation, bedrock and hydrothermal gas, we define sources and transport of dissolved SO₄ by the current Valles hydrologic system.

Magmatic sources are major S contributors into the Valles Caldera aqueous systems (streams, shallow groundwater), occurring through steam-dominated H₂S degassing with δ^{34} S values of +0.9 ± 3‰. However, subsurface hydrothermal processes have resulted in more negative δ^{34} S values in sulfide minerals (-14 to -4 ‰). Two major aqueous SO₄ sources are oxidation of H₂S from modern hydrothermal gas emission, and oxidation and dissolution of sulfide and sulfate minerals in hydrothermally altered bedrock and crater-lake sediments. Minor SO₄ contributions with positive δ^{34} S values (+9 to +14‰) come from deeply circulating geothermal fluids and negligible amounts from atmospheric deposition with δ^{34} S of +5 to +7% (e.g., snow). The aqueous SO₄ inputs are mainly controlled by dissolution/oxidation of the volcanic bedrock and localized surface H2S gas emission. Because most intracaldera bedrock is S-depleted, so are the younger sedimentary lake deposits and surface aquatic system.

We infer that measured $\delta^{34}S$ (-47 to +28‰) in Gale crater sediments can be explained by the presence of magmatic-hydrothermal sulfide/sulfate minerals in the igneous protolith of Gale sediments with large range of $\delta^{34}S$. Later aqueous processes involved oxidation and dissolution of S minerals initially present in this igneous material and led to subsequent formation of diagenetic fluids and alteration products enriched in SO₄ with relatively large $\delta^{34}S$ variation.