METAPROTEOMICS REVEAL UNCHARACTERIZED BETAPROTEOBACTERIAL ELECTRON CONDUITS

N. Szeinbaum¹, C. Henny³, S.A. Crowe⁴, F.J. Stewart¹, T.J. DiChristina¹, C.T. Reinhard², B.L. Nunn⁵, and J.B. Glass²

¹School of Biology and ²School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA
³Research Center for Limnology, Indonesian Institute of Sciences, Cibinong, Indonesia
⁴Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, Canada
⁵Department of Genome Sciences, University of Washington, Seattle, WA

Metal-rich ancient ocean analogues provide an opportunity to explore primitive, microbially-driven metal cycling. Respiratory pathways can be investigated in uncultivated microbes using met-omic techniques. We evaluated the metaproteomic profile of sediment enrichments from Lake Matano, an ancient ocean analogue, cultured anoxically over ~1 year with soluble Mn³⁺ as the sole electron acceptor. DNA and protein for metagenomic and metaproteomic sequencing were recovered from the fourth transfer on day 335. Spectral counts from shotgun proteomics determined on a high accuracy tandem mass spectrometer provided relative quantification of protein expression. Metagenomic binning recovered a near-complete Dechloromonas genome (hereafter “Candidatus Dechloromonas occultata” [occultata (L. adj.), hidden]). The genetic inventory of “Ca. D. occultata” was consistent with a neutrophilic metal-oxidizing lifestyle. D. occultata encoded a porin-cytochrome outer membrane complex absent in metal-oxidizing Dechloromonas agitata. An uncharacterized operon rich in multiheme c-type cytochromes (cCyt) including an undecaheme cCyt was highly expressed. The cCyt-rich operon is also present in other Betaproteobacteria from metal-rich subsurface ecosystems, including many uncultivated members. Denitrification proteins were also highly expressed in “Ca. D. occultata”, despite the lack of nitrogen oxides in the media. Our findings support a role for betaproteobacteria in metal and nitrogen cycling in the deep subsurface through potentially uncharacterized mechanisms. Funded by NASA Exobiology and NASA Astrobiology Institute Alternative Earths.