Persistent global marine anoxia in the early Silurian

STOCKEY, R.G.¹, COLE, D.B.², PLANAVSKY, N.J.², LOYDELL, D.K.³, FRYDA, J.⁴, SPERLING, E.A.¹

¹Department of Geological Sciences, Stanford University, Stanford, CA, rstockey@stanford.edu
²Department of Geology and Geophysics, Yale University, New Haven, CT
³School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, UK
⁴Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

The lower Silurian Rhuddanian Stage directly follows both the Hirnantian glaciation and end-Ordovician mass extinction. The E1-NC174 core from the Murzuq Basin, Libya, records a continuous black shale sequence from the lower to upper Rhuddanian (Akidograptus ascensus-Parakidograptus acuminatus to Coronograptus cyphus global graptolite biozones, lasting approximately 3 million years). Using iron speciation analyses we have empirically confirmed previous inferences that this shale sequence was deposited under a consistently anoxic water column. Pyrite to highly reactive iron ratios further demonstrate that bottom-waters were locally euxinic throughout this interval.

To evaluate the global extent of reducing depositional environments through this interval we measured the uranium and molybdenum stable isotope compositions of this euxinic shale sequence. Both δ²³⁸U and δ⁹⁸Mo values exhibit low variance, and Mo isotope values are anomalously light. We make a case that the low variance in the δ⁹⁸Mo values is indicative of Mo being quantitatively reduced under the locally euxinic conditions represented by the Rhuddanian black shales of the Murzuq Basin. These consistently low isotope values are interpreted as recording roughly 3 million years of persistently reducing global marine conditions in the early Silurian. Although there is fractionation during U removal into anoxic environments, the shale δ²³⁸U values are also consistent with widespread anoxia. Isotope mass balance modeling suggests that, at minimum, oxygen minimum zones during this interval were greatly expanded and largely euxinic.