Estimating the atmospheric depositional flux of ²¹⁰Pb using the water column budget of ²¹⁰Pb in the ocean

HOJONG SEO¹, GUEBUEM KIM^{1*}, YOUNG-IL KIM²

School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea¹ East Sea Research Institute, KIOST, Uljin 36315, Korea² (*correspondence: gkim@snu.ac.kr)

In order to determine the atmospheric depositional fluxes of 210 Pb (half-life = 22.3 yrs), we established the mass balance model of 210 Pb in the water column (0 – 1000 m) of the East Sea. The atmospheric input flux is assumed to be balanced by the in-situ production from ²²⁶Ra (half-life = 1600 yrs), the in-situ decay to 210 Po (half-life = 138 days), and the settling to the deep ocean through 1000 m. The insitu production and decay fluxes are estimated from the vertical profiles of ²²⁶Ra and ²¹⁰Pb in the East Sea obtained in this (April 2015) and previous studies. The settling flux is estimated from the sediment trap data obtained in 1999. The in-situ ingrowth and decay fluxes were 0.40 and 0.24 dpm cm⁻² yr⁻¹, respectively, and the settling flux is calculated to be 1.57 dpm cm⁻² yr⁻¹. Then, the atmospheric depositional flux of ²¹⁰Pb is calculated to be 1.41 dpm cm⁻² yr⁻¹. This value is consistent with the depositional fluxes of ²¹⁰Pb (1 - 2 dpm cm⁻² yr⁻¹) observed on the land sites previously in this region. This atmospheric depositional flux of ²¹⁰Pb measured in the ocean may be useful for accurately estimating the atmospheric depositional fluxes of other chemical components (i.e., nutrients, organic matter, and trace elements) to the ocean.