Multimodal Imaging of a Banded Iron Formation Sample

Martin Schoonen^{1,2*}, Juergen Thieme¹, Paul Northrup^{1,2}, Steven Jaret², Benjamin McKeeby² Timothy Glotch², Jordan Yong², Mehmet Yesiltas², Hiroshi Ohmoto³

 ¹Brookhaven National Laboratory, Upton, NY11973, USA (*correspondence: mschoonen@BNL.gov)
²Geosciences, Stony Brook Univ., Stony Brook, NY, USA
³Department of Geosciences, Penn State University, University Park, PA 16802, USA

Introduction

The usefulness of a multimodal imaging strategy to study complex geological and planetary samples was evaluated and barriers to its implementation were identified. Synchrotron-based XRF and microspectroscopy techniques along with benchtop Confocal Raman, FTIR and optical microscopies were used to study a single thin section obtained from the Temagami Algoma-type Banded Iron Formation (BIF) in Ontario, Ca.

Methods

Almost the entire thin section was imaged using IR microscopy at a resolution of 25 μ m as a first step. Guided by this image, synchrotron XRF and absorption spectroscopy studies were conducted at the Submicron Resolution X-ray Spectroscopy (SRX) and Tender Energy X-ray Absorption Spectroscopy (TES) beamlines at the National Synchrotron Light Source II at Brookhaven National Laboratory. A combination of coarse (10 μ m steps) and high-resolution (2 μ m down to sub- μ m steps) elemental maps were obtained at various incident beam energies. The maps were used to select locations for microbeam Fe, Ca and P XANES. We also collected Fe-XANES maps across a transition from a silica-rich to an iron-rich band. Confocal-Raman micro-spectroscopy was used to generate 3D images at 1 μ m/pixel.

Results

By deploying a combination of techniques and fusing data it is possible to gain deeper insights into mineralogical, elemental and chemical properties down to sub- μ m spatial scales (e.g., Fe and Ca XANES in combination with vibrational spectroscopy allows one to conclusively identify carbonate minerals). A major challenge in such multimodal analyses is the need to combine and align 2D and 3D data from different techniques each with their own spatial resolution and file format.

NSLS-II is supported by US-DOE, Office of Science, Basic Energy Science under contract DE-SC0012704.