Spectrophotometric Determinations of Carbonate Dissociation Constants in Seawater

KATELYN M. SCHOCKMAN¹, ROBERT H. BYRNE^{1*}

¹University of South Florida, St. Petersburg, FL 33701 USA (<u>kschockman@mail.usf.edu</u>) (*correspondence: rhbyrne@usf.edu)

Carbonate system parameters (pH, total alkalinity (TA), total dissolved inorganic carbon (DIC), carbon dioxide fugacity (fCO₂)) are related through calculations involving the CO₂ dissociation constants, K₁ and K₂. These constants, which relate H⁺ concentrations to the relative concentrations of CO₂, HCO₃⁻ and CO₃²⁻, have uncertainties on the order of 2% and 5% respectively and thereby limit our understanding of the marine CO₂ system. The goal of my investigation is improvement of the accuracy of K₁ and K₂ parameterizations over a wide range of salinity and temperature.

My determinations of K_1 and K_2 are being performed using spectrophotometric pH measurements obtained with purified metacresol purple indicator. The procedure used in this work involves adjustments of solution pH to values near an expected equilibrium pH, and then adding pure NaHCO₃ to determine the pH at which NaHCO₃ additions produce no pH change. The pH at which NaHCO₃ additions cause no pH change is equal to $\frac{1}{2}(pK_1+pK_2)$. Calculated K₂ values and literature K₁ values will subsequently be used to determine whether the correspondence between calculated and measured TA, DIC and pH values obtained on the GOMECC-3 expedition (2017) is improved relative to calculations that use previous K_1 and K_2 parameterizations.