Oxygen isotopes in Kankan super-deep diamond inclusions reveal variable slab-mantle interaction

M.E. REGIER*, D.G. PEARSON, T. STACHEL, R.A. STERN, J.W. HARRIS

Department of Earth and Atmospheric Sciences, University of Alberta, Canada T6G 2E3

(*correspondence: margoregier@gmail.com)

Inclusions in super-deep diamonds provide a unique window to the sublithospheric mantle (e.g. [1-4]). Here we present oxygen isotopes for Kankan majoritic garnet and former bridgmanite inclusions. The clustering of Kankan majorites around a δ^{18} O of +9‰ is nearly identical to those reported from Jagersfontein [1]. This elevated and nearly constant δ^{18} O signal indicates homogenization of partial melts from the uppermost part of altered basaltic slabs. Conversely, δ^{18} O values in Juina majorites are highly variable [2] due to crystallization from small, discrete melt pockets in a heterogeneous eclogitic source. While all these majorites have eclogitic/pyroxenitic Cr2O3 and CaO contents, charge-balance for Si^[VI] is achieved very differently, with Jagersfontein [3], Kankan [4], and Juina [2] majorites transitioning from eclogitic $Na^{\rm [VIII]}Si^{\rm [VI]}$ to peridotitic-pyroxenitic [5] Mg^[VI]Si^[VI] substitutions. We interpret this shift as the result of homogenized eclogitic partial melts infiltrating and reacting with adjacent pyrolitic mantle at Kankan and Jagersfontein. Increases in Mg# and Cr₂O₃ with reductions in δ^{18} O support this reaction. This model is in agreement with recent experiments in which majorites and diamonds form from a reaction of slab-derived carbonatite with reduced pyrolite at 300-700 km depth [6].

The Kankan diamonds also provide an opportunity to establish the chemical environment of the lower mantle. Four inclusions of MgSiO₃, inferred to be former bridgmanite [4], provide the first-measured δ^{18} O values for lower mantle samples. These values suggest derivation from primitive mantle, or unaltered subducted oceanic lithospheric mantle. The Kankan super-deep inclusions thus provide a cross-section of deep mantle that highlights slab-pyrolite reactions in the asthenosphere and primitive compositions in the lower mantle.

Ickert et al. (2015), Geochem Perspect Letters, 1,
65-74. [2] Burnham et al. (2015), EPSL, 432, 374-380. [3]
Tappert et al. (2005), Contr Min Pet, 150, 505-522. [4]
Stachel (2000), Contributions Mineral Petrol, 140, 16-27.
Kisseva et al. (2013) Geology, 41, 883-886. [6] Thomson et al. (2016), Nature, 529, 76-79.