Olivine reveals distinct δ^{18} O domains in the Icelandic mantle

M. B. RASMUSSEN*¹, S. A. HALLDÓRSSON¹, S. A. GIBSON², M. J. WHITEHOUSE³, G. H. GUÐFINNSSON¹

¹ Nordic Volcanological Center, University of Iceland, Reykjavik, Iceland (*maja@hi.is)

² University of Cambridge, Cambridge, UK

³ Swedish Museum of Natural History, Stockholm, Sweden

Major and minor element chemistry of olivine is widely used as a proxy for lithological variations in the mantle source of oceanic basalts, including Iceland [1]. Olivine can therefore be useful for better understanding isotopic variations in elements susceptible to secondary modification. However, previous studies of δ^{18} O in Icelandic basalts have mostly involved batch mineral analyses, that cannot resolve intramineral variability resulting from shallow-level processes [2]. To avoid these, we couple major, minor and trace elements of high-Fo# (>80) olivine with *in-situ* δ^{18} O₍₀₁₎ measurements to robustly constrain lithological and δ^{18} O variations in the Icelandic mantle plume. Our samples cover the neovolcanic zones and older Tertiary units, most of which previously have been analysed for ³He/⁴He ranging from 6.7 to 47.8 R_A [3].

The olivine crystals range in Fo# between 80 to 92 with limited intra-grain variability and display a variation in $\delta^{18}O_{(O)}$ of >3 ‰ across Iceland, with most values falling below those of typical upper mantle olivine ($\sim 5.1 \pm 0.2\%$ [4]). This variability appears to be independent of Fo#, suggesting that it is largely primary. The trace element ratios of the olivines indicate a change in governing source lithology beneath Iceland with an olivine-poor mantle component being sampled to a greater extent in the South Iceland Volcanic Zone (SIVZ), which is a region of active rift propagation. Olivine crystals from the SIVZ are generally characterised by lower Mn/Fe and higher Ga/Sc relative to olivine from elsewhere in Iceland, while their $\delta^{18}O_{(O)}$ varies significantly (from +3.45 to +4.98 ‰). A lack of correlation between lithological proxies and $\delta^{18}O_{(OI)}$, suggests that the low δ^{18} O is not constrained within one source lithology. Coupled ${}^{3}\text{He}/{}^{4}\text{He}-\delta^{18}\text{O}$ systematics in the Icelandic olivine crystals are best explained by mixing of three geochemical end-members, with one being a high ${}^{3}\text{He}/{}^{4}\text{He}$ and low $\delta^{18}O_{(OI)}$ (~4‰) mantle component. This component is identified in olivine crystals found both in central and south Iceland and it is a likely candidate for the Icelandic plume.

[1] Sobolev et al., (2007), Science **316**, 412-417; [2] Bindemann et al., (2008), GCA **72**, 4397-4420; [3] Harðardóttir et al., (2017), Chemical Geology **480**, 12-27; [4] Eiler, (2001), Rev. Mineral. Geochem **43** (1), 319-264