The vanadium isotopic composition of the BSE: constraints from peridotites and komatiites

YUHAN QI¹, FEI WU², DMITRI A. IONOV³, IGOR S. PUCHTEL⁴, ROBERT W. NICKLAS⁴, HUIMIN YU¹, JINTING KANG¹, CHUNHUI LI¹, FANG HUANG¹

¹ School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China, (givuhan@mail.ustc.edu.cn)

² Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA

³ Géosciences Montpellier, Université de Montpellier, Montpellier 34095, France

⁴ Department of Geology, University of Maryland, College Park, MD 20742, USA

In order to apply vanadium (V) isotopes to studies of accretion and evolution of the solar system¹ and redox variation of the terrestrial Earth, it is important to constrain the V isotopic composition of the Bulk Silicate Earth (BSE). We present δ^{51} V (δ^{51} V = [$({}^{51}$ V/ 50 V)_{sample}/ $({}^{51}$ V/ 50 V)_{AA} – 1] × 1000) for ten mantle peridotite xenoliths from Pleistocene basalts and one harzburgite from Holocene Haer volcano at Tariat in central Mongolia, four 1.98 Ga mafic-ultramafic rocks from NW Russia, and ten komatiites from six localities ranging in age from 2.41 to 3.48 Ga.

The average of δ^{51} V value for the fertile spinel lherzolites is -0.91 ± 0.02‰ (2SE, n = 8). There is no resolvable V isotopic difference for the moderately to highly refractory peridotites. The average of δ^{51} V value for komatiites is -0.91 ± 0.02‰ (2SE, n = 10). The δ^{51} V values for the 1.98 Ga volcanic rocks range from -0.76 ± 0.04‰ to -0.82 ± 0.06‰, and the average is -0.80 ± 0.03‰ (2SE, n = 4), which may reflect the effect of magma differentiation.

The averages of δ^{51} V values for these mantle peridotites and komatiites are identical within their respective analytical uncertainties, suggesting that the mantle has homogenous V isotopic compositions. We estimate that the δ^{51} V value of the BSE is -0.91 ± 0.01‰ (2SE, n = 18) based on the mantle peridotites and komatiites. V isotopic difference between the inferred BSE and primitive MORB² (-0.84 ± 0.02‰, 2SE, n = 22) indicates small V isotopic fractionation during mantle partial melting. Our results provide a robust estimate of V isotopic composition of the BSE, which is important for further study on comparison of V isotopic compositions between the Earth and extraterrestrial materials.

[1] Nielsen et al. (2014), *EPSL* 389, 167-175. [2] Wu, F. *et al.* (2018), submitted to *EPSL*.