Methane cycling in the alkaline serpentinizing vents of the Prony Hydrothermal Field, New Caledonia

R. Price¹, C. N. Sutcliffe², B. Sherwood-Lollar², G. Erauso³, M. Quéméneur³, A. Postec³, C. Monnin⁴, L.

Wehrmann¹, D. P. Gillikin⁵, B. Ménez⁶, B. Pelletier⁷,

C. Payri⁷, T. Hoehler⁸

¹SoMAS, SUNY Stony Brook, Stony Brook, NY, USA

²University of Toronto, Toronto, Canada

³Institut Méditerranéen d'Océanologie (MIO), Marseille France

⁴Geosciences et Environment (GET), Toulouse, France

⁵Union College, Dept. of Geology, Schenectady, NY, USA

⁶Institut de Physique du Globe de Paris, France

⁷Institut de Recherche pour le Developpement (IRD), New Caledonia

⁸NASA Ames Research Center, Moffett Field, CA, USA Both experimental and empirical data indicate that H_2 generated by serpentinization can combine with carbon to abiotically form CH₄, with clear implications for abiogenesis. Today, CH₄ is both generated and consumed by microbes, complicating our determination of abiotic versus biotic sources. Here, we present new isotopic data for the unique, serpentinite-hosted, shallow-sea alkaline hydrothermal vent system; the Prony Hydrothermal Field (PHF), offshore New Caledonia (supplementing [1]). Besides low salinity, H₂O isotopes confirm that all fluids are sourced from meteoric water. Free gas H₂ and CH₄ concentrations were up to 40 and 16%, respectively, with the remainder as $N_2.\ \delta D\text{-}H_2$ values (-684 to -725‰) suggest equilibrium with H₂O at temperatures in the range of 30-60°C. The δ^{13} C-CH₄ varied ~10‰ between each site, with increasing ¹³C enrichment from Kaori (-38‰), Japonais (-24‰), and Aiguille (-16‰). The δ D-CH₄ values were around -292‰ for Kaori, -324‰ for Japonais, and -281‰ for Aiguille. δ^{13} C-CH₄ values are all within the range of abiotic formation via FTT synthesis, but such enrichment could also mean variable imprint of CH4 oxidation on biogenic CH₄ (e.g., [2]). At PHF, two phylotypes of uncultivated Methanosarcinales dominate the archaeal community [3, 4, 5], each previously detected only at The Cedars (California) and the Lost City Hydrothermal Field. It is unclear if these Methanosarcinales thrive by methanogenesis, methanotrophy, or both, but it is likely that isotopic signatures are influenced by these and other microbial interactions. ¹Monnin et al. (2014), Biogeosciences, 11 5687-5706. ²McKay et al. (2016), Env. Mic. Reports, 8, 150-161. ³Quéméneur et al. (2014), Env. Mic. Reports, 6, 665-674. ⁴Postec et al. (2015), Frontiers in Microbiology, 6, 857. ⁵*Frouin et al.* (2018), *Frontiers in Microbiology*, 9, 102